Abstract

Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, τ, of the Eu3+ emission that follows the cationic mass; τCa < τSr < τBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise “standard” materials, e.g., vapor-derived silica, in next generation optical fibers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. Nilsson, and A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  2. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, 1993).
  3. S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985).
    [CrossRef]
  4. J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
    [CrossRef]
  5. V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
    [CrossRef]
  6. A. Dhar, A. Pal, M. Ch. Paul, P. Ray, H. S. Maiti, and R. Sen, “The mechanism of rare earth incorporation in solution doping process,” Opt. Express16(17), 12835–12846 (2008).
    [CrossRef] [PubMed]
  7. M. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, Inc., 2001).
  8. S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
    [CrossRef]
  9. W. Blanc, B. Dussardier, G. Monnom, R. Peretti, A. M. Jurdyc, B. Jacquier, M. Foret, and A. Roberts, “Erbium emission properties in nanostructured fibers,” Appl. Opt.48(31), G119–G124 (2009).
    [CrossRef] [PubMed]
  10. W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).
  11. B. Dussardier, W. Blanc, and G. Monnom, “Luminescent ions in silica-based optical fibers,” Fiber Integr. Opt.27(6), 484–504 (2008).
    [CrossRef]
  12. A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
    [CrossRef]
  13. O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
    [CrossRef]
  14. D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
    [CrossRef]
  15. C. Kucera, B. Kokuoz, D. Edmondson, D. Griese, M. Miller, A. James, W. Baker, and J. Ballato, “Designer emission spectra through tailored energy transfer in nanoparticle-doped silica preforms,” Opt. Lett.34(15), 2339–2341 (2009).
    [CrossRef] [PubMed]
  16. K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
    [CrossRef]
  17. C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
    [CrossRef]
  18. J. DiMaio, B. Kokuoz, T. L. James, T. Harkey, D. Monofsky, and J. Ballato, “Photoluminescent characterization of atomic diffusion in core-shell nanoparticles,” Opt. Express16(16), 11769–11775 (2008).
    [CrossRef] [PubMed]
  19. Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
    [CrossRef]
  20. J. Frantza and B. Mysen, “Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600C,” Chem. Geol.121(1-4), 155–176 (1995).
    [CrossRef]

2010 (2)

D. Richardson, J. Nilsson, and A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

2009 (4)

C. Kucera, B. Kokuoz, D. Edmondson, D. Griese, M. Miller, A. James, W. Baker, and J. Ballato, “Designer emission spectra through tailored energy transfer in nanoparticle-doped silica preforms,” Opt. Lett.34(15), 2339–2341 (2009).
[CrossRef] [PubMed]

O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
[CrossRef]

W. Blanc, B. Dussardier, G. Monnom, R. Peretti, A. M. Jurdyc, B. Jacquier, M. Foret, and A. Roberts, “Erbium emission properties in nanostructured fibers,” Appl. Opt.48(31), G119–G124 (2009).
[CrossRef] [PubMed]

W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).

2008 (4)

B. Dussardier, W. Blanc, and G. Monnom, “Luminescent ions in silica-based optical fibers,” Fiber Integr. Opt.27(6), 484–504 (2008).
[CrossRef]

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

J. DiMaio, B. Kokuoz, T. L. James, T. Harkey, D. Monofsky, and J. Ballato, “Photoluminescent characterization of atomic diffusion in core-shell nanoparticles,” Opt. Express16(16), 11769–11775 (2008).
[CrossRef] [PubMed]

A. Dhar, A. Pal, M. Ch. Paul, P. Ray, H. S. Maiti, and R. Sen, “The mechanism of rare earth incorporation in solution doping process,” Opt. Express16(17), 12835–12846 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

2006 (1)

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

2005 (1)

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

1995 (1)

J. Frantza and B. Mysen, “Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600C,” Chem. Geol.121(1-4), 155–176 (1995).
[CrossRef]

1994 (1)

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
[CrossRef]

1992 (1)

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

1987 (1)

J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

1985 (1)

S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985).
[CrossRef]

Baker, W.

Ballato, J.

Blanc, W.

W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).

W. Blanc, B. Dussardier, G. Monnom, R. Peretti, A. M. Jurdyc, B. Jacquier, M. Foret, and A. Roberts, “Erbium emission properties in nanostructured fibers,” Appl. Opt.48(31), G119–G124 (2009).
[CrossRef] [PubMed]

B. Dussardier, W. Blanc, and G. Monnom, “Luminescent ions in silica-based optical fibers,” Fiber Integr. Opt.27(6), 484–504 (2008).
[CrossRef]

Boivin, D.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

Bubnov, M.

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

Burov, E.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

Cavani, O.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

Céreyon, A.

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

Champagnon, B.

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

Clarkson, A.

Collet, C.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

Dhar, A.

Dhopte, S.

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

Dianov, E.

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

DiMaio, J.

Dussardier, B.

Dussardier, D.

W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).

Edmondson, D.

Fermann, M.

S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985).
[CrossRef]

Föhn, T.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

Foret, M.

Frantza, J.

J. Frantza and B. Mysen, “Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600C,” Chem. Geol.121(1-4), 155–176 (1995).
[CrossRef]

Gonnet, C.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

Griese, D.

Gur’yanov, A.

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

Harkey, T.

Izumitani, T.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
[CrossRef]

Jacquier, B.

James, A.

James, T. L.

Jurdyc, A.

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

Jurdyc, A. M.

Kasik, I.

O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
[CrossRef]

Khopin, V.

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

Kilian, A.

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

Kokuoz, B.

Kondawar, V.

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

Koponen, J.

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

Kucera, C.

Lempereur, S.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

Maiti, H. S.

Martinez, V.

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

Matejec, V.

O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
[CrossRef]

Miller, M.

Moharil, S.

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

Monnom, G.

Monofsky, D.

Morinaga, K.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
[CrossRef]

Morse, T.

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

Muthal, P.

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

Mysen, B.

J. Frantza and B. Mysen, “Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600C,” Chem. Geol.121(1-4), 155–176 (1995).
[CrossRef]

Nageno, Y.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
[CrossRef]

Nilsson, J.

Oh, K.

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

Pal, A.

Pandey, C.

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

Pastouret, A.

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

Paul, M.

W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).

Paul, M. Ch.

Payne, D.

J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985).
[CrossRef]

Peretti, R.

Philippov, V.

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

Podrazky, O.

O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
[CrossRef]

Poole, S.

J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985).
[CrossRef]

Pospisilova, M.

O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
[CrossRef]

Ray, P.

Reinhart, L.

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

Richardson, D.

Risen, W.

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

Roberts, A.

Sen, R.

Senatorov, A.

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

Soderlund, M.

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

Stenius, P.

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

Takebe, H.

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
[CrossRef]

Tammela, S.

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

Townsend, J.

J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

Umnikov, A.

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

Appl. Opt. (1)

Chem. Geol. (1)

J. Frantza and B. Mysen, “Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600C,” Chem. Geol.121(1-4), 155–176 (1995).
[CrossRef]

Electron. Lett. (2)

S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985).
[CrossRef]

J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

Fiber Integr. Opt. (1)

B. Dussardier, W. Blanc, and G. Monnom, “Luminescent ions in silica-based optical fibers,” Fiber Integr. Opt.27(6), 484–504 (2008).
[CrossRef]

Inorg. Mater. (1)

V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005).
[CrossRef]

J. Non-Cryst. Solids (3)

A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008).
[CrossRef]

K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992).
[CrossRef]

Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Glasses (1)

W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).

Phys. Status Solidi C (1)

O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009).
[CrossRef]

Proc. SPIE (2)

D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010).
[CrossRef]

S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006).
[CrossRef]

Radiat. Eff. Defects Solids (1)

C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007).
[CrossRef]

Other (2)

A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, 1993).

M. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, Inc., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission electron micrographs of the as-synthesized (a) CaF2, (b) SrF2, and (c) BaF2. Powder x-ray diffraction scans of the as-synthesized (d) CaF2, (e) SrF2, and (f) BaF2 with crystallographic reflections noted.

Fig. 2
Fig. 2

(a) Emission spectra of precursor europium doped (AE)F2 nanoparticles; N.B., only present are emissions indicative of Eu3+. (b) Emission spectra of the Eu:(AE)F2 nanoparticle doped silica preforms; N.B., only present are emissions indicative of Eu3+ in the nanoparticle-doped preforms whereas Eu2+ is found in the conventionally (dissolved salt) solution doped preform (Eu/Al). In all cases, the nanoparticles were doped with 5 weight percent Eu and the excitation wavelength was 393 nm.

Fig. 3
Fig. 3

Comparison of hypersensitivity ratio of europium (Eu3+) doped alkaline earth fluoride nanoparticle to that from the same nanoparticle doped preform.

Fig. 4
Fig. 4

Comparison of the lifetime values for each type of Eu:AEF2-doped preform. Since the conventionally-prepared preform exhibited only Eu2+ emissions, similar data could not be obtained as it is relates to the Eu3+ dynamics.

Fig. 5
Fig. 5

Two-dimensional schematic representation of the incorporation of Eu:(AE)F2 nanoparticles into the silica optical fiber preform based on the vibrational, phonon sideband, and fluorescence data.

Metrics