Abstract

We investigate hybridized electric and magnetic plasmon modes in stacked nanocups. To elucidate the coupling mechanism we demonstrate the analogy between split-ring-resonators and nanocups in the case of dipolar excitation and compare the behavior of stacked nanocups to stacked split-ring-resonators. The interplay of electric coupling with the symmetric and antisymmetric coupling of magnetic moments in effective split-ring-resonator resonances in the nanocups leads to experimentally observed hybridized modes in the coupled nanocup system. Our stacked nanocups are easily manufacturable at low cost, they cover a large-area, and can serve as SERS or SEIRA substrates. They might also serve as novel plasmonic nanoantennas, as templates for nonlinear plasmonics, and as stacked meander surfaces for metamaterial-assisted imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
    [CrossRef]
  2. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
    [CrossRef]
  3. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
    [CrossRef]
  4. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18, 235704 (2007).
    [CrossRef]
  5. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
    [CrossRef]
  6. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
    [CrossRef]
  7. J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
    [CrossRef]
  8. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9, 1255–1259 (2009).
    [CrossRef]
  9. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
    [CrossRef]
  10. P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011).
    [CrossRef]
  11. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
    [CrossRef]
  12. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
    [CrossRef]
  13. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
    [CrossRef]
  14. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
    [CrossRef]
  15. Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
    [CrossRef]
  16. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
    [CrossRef]
  17. S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
    [CrossRef]
  18. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
    [CrossRef]
  19. J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
    [CrossRef]
  20. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express16, 10858–10866 (2008).
    [CrossRef]
  21. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009).
    [CrossRef]
  22. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
    [CrossRef]
  23. R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
    [CrossRef]
  24. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
    [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  26. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
    [CrossRef]
  27. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006).
    [CrossRef]
  28. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
    [CrossRef]
  29. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
    [CrossRef]
  30. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed.49, 9838–9852 (2010).
    [CrossRef]
  31. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express15, 12095–12101 (2007).
    [CrossRef]
  32. N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
    [CrossRef]
  33. Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011).
    [CrossRef]
  34. L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
    [CrossRef]

2012 (2)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

2011 (7)

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
[CrossRef]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
[CrossRef]

2010 (4)

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed.49, 9838–9852 (2010).
[CrossRef]

2009 (6)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
[CrossRef]

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009).
[CrossRef]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9, 1255–1259 (2009).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

2008 (2)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef]

2007 (3)

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express15, 12095–12101 (2007).
[CrossRef]

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18, 235704 (2007).
[CrossRef]

2006 (3)

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

2005 (1)

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
[CrossRef]

2003 (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
[CrossRef]

1998 (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
[CrossRef]

1997 (1)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Abdelsalam, M.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Ali Yanik, A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Ayala-Orozco, C.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Bardhan, R.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

Bartlett, P. N.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

Baumberg, J. J.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

Borghs, G.

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

Brannan, T.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

Burger, S.

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Chang, W.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

Choi, D.

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cole, R. M.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Cortie, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18, 235704 (2007).
[CrossRef]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Etrich, C.

Ford, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18, 235704 (2007).
[CrossRef]

Frank, B.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
[CrossRef]

Frenner, K.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011).
[CrossRef]

Fu, L.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011).
[CrossRef]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express15, 12095–12101 (2007).
[CrossRef]

Gaiser, P.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Garcia de Abajo, F. J.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

Garcia-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Giersig, M.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
[CrossRef]

Giessen, H.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011).
[CrossRef]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed.49, 9838–9852 (2010).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
[CrossRef]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express15, 12095–12101 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006).
[CrossRef]

Glaczynska, H.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
[CrossRef]

Gompf, B.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
[CrossRef]

Grange, R.

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef]

Guo, H.

Gwinner, M. C.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

Halas, N. J.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
[CrossRef]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9, 1255–1259 (2009).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
[CrossRef]

Hsieh, C.

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef]

Jang, S. G.

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Käll, M.

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009).
[CrossRef]

Kandulski, W.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
[CrossRef]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Kim, S.

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

King, N. S.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Koroknay, E.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Kosiorek, A.

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
[CrossRef]

Kuhl, J.

Lagae, L.

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
[CrossRef]

Lal, S.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

Lassiter, J. B.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

Lederer, F.

Li, Y.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

Linden, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Link, S.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
[CrossRef]

Liu, N.

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed.49, 9838–9852 (2010).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
[CrossRef]

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express15, 12095–12101 (2007).
[CrossRef]

Maes, G.

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
[CrossRef]

Mahajan, S.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

Meyrath, T. P.

Mirin, N. A.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9, 1255–1259 (2009).
[CrossRef]

Mukherjee, S.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Nordlander, P.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
[CrossRef]

Osten, W.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011).
[CrossRef]

Pakizeh, T.

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009).
[CrossRef]

Patoka, P.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef]

Psaltis, D.

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef]

Pu, Y.

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Schau, P.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Schau, Ph.

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Schweizer, H.

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Sobhani, H.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

Soukoulis, C. M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Stefani, F. D.

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
[CrossRef]

Taminiau, T. H.

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

Van Dorpe, P.

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011).
[CrossRef]

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

van Hulst, N. F.

Van Roy, W.

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

Verellen, N.

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

Wegener, M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
[CrossRef]

Wollet, L.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Yang, S.

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

Ye, J.

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011).
[CrossRef]

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009).
[CrossRef]

Yu, H. K.

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

Zentgraf, T.

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
[CrossRef]

Zhao, J.

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
[CrossRef]

Zhou, J.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
[CrossRef]

ACS Nano (4)

J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010).
[CrossRef]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011).
[CrossRef]

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011).
[CrossRef]

J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011).
[CrossRef]

Angew. Chem. Int. Ed. (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed.49, 9838–9852 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998).
[CrossRef]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999).
[CrossRef]

Langmuir (1)

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009).
[CrossRef]

Nano Lett. (5)

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9, 1255–1259 (2009).
[CrossRef]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011).
[CrossRef]

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007).
[CrossRef]

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009).
[CrossRef]

Nanotechnology (1)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18, 235704 (2007).
[CrossRef]

Nat. Commun. (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef]

Nat. Mater. (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012).
[CrossRef]

Nat. Photonics (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008).
[CrossRef]

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003).
[CrossRef]

Proc. SPIE (1)

L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef]

Small (3)

A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005).
[CrossRef]

S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006).
[CrossRef]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic drawing of stacked nanocups (b) Geometrical parameters and thickness of the inner Au layer g1, MgF2 spacer layer d and outer Au layer g2 (c) hexagonally close-packed polystyrene sphere monolayer (d) FIB cut of the experimental realization of the coupled nanocups with parameters [g1, d, g2] = [27, 56, 29] nm (e) FIB cut of the inner cup based on an evaporated gold layer g1 = 27nm (f) FIB cut of the outer cup with additional magnesium fluoride layer and g2 = 25nm Au layer (deviation from (d) due to fabricational tolerances)

Fig. 2
Fig. 2

Mode splitting in stacked nanocups: Comparison of reflectance spectra of the fabricated structures (Fig. 1) to simulated data. In analogy to the mode hybridization theory one additional reflectance dip appears for the stacked nanocup arrangement in simulation and experiment

Fig. 3
Fig. 3

Mode classification for stacked nanocups. (a) Visualization of analogy to split-ring-resonator modes and identification of symmetric and antisymmetric mode. (b) Electric mode via charge distribution from CST Microwave Studio. (c) Magnetic mode via y-component of the magnetic field in order to visualize magnetic moment coupling from CST Microwave Studio.

Fig. 4
Fig. 4

Variation of spacer thickness in stacked cups illustrated by three samples with parameters [g1, d1, g2] = [27, 56, 29] nm, [g1, d2, g2] = [27, 46, 29] nm, [g1, d3, g2] = [27, 36, 29] nm.

Metrics