Abstract

We report on the improvement in photostability of solid-state dye materials. The photostability is the amount of energy that can be deposited in the material before its luminescence or lasing intensity has dropped to 50% of the initial value. It is shown that the photostability can be prolonged by a factor 100 by reducing the oxygen content in the material. The realized oxygen removal procedure and encapsulation of the solid state dye does not affect the luminescence properties and thus might be applicable in dye lasers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sanchez and B. Lebeau, “Design and properties of hybrid organic-inorganic nanocomposites for photonics,” MRS Bull. 26, 377–387 (2001).
    [Crossref]
  2. P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
    [Crossref]
  3. R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
    [Crossref]
  4. A. Costela, I. Garcia-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: Recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
    [Crossref]
  5. H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
    [Crossref]
  6. Y. Yang, R. Goto, S. Omi, K. Yamashita, H. Watanabe, M. Miyazaki, and Y. Oki, “Highly photo-stable dye doped solid-state distributed-feedback (DFB) channeled waveguide lasers by a pen-drawing technique,” Opt. Express 18, 22080–22089 (2010).
    [Crossref] [PubMed]
  7. G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
    [Crossref]
  8. M. E. Perez-Ojeda, C. Thivierge, V. Marting, A. Costela, K. Burgess, and I. Garcia-Moreno, “Highly efficient and photostable photonic materials from diiodinated BODIPY laser dyes,” Opt. Mater. Express 1, 243–251 (2011).
    [Crossref]
  9. J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
    [Crossref] [PubMed]
  10. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous wave solid-state dye laser,” Opt. Lett. 31, 1669–1671 (2006).
    [Crossref] [PubMed]
  11. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
    [Crossref]
  12. G. Jones, “Photochemistry of laser dyes: smart pixels,” in Dye Laser Principles, DuarteF. J.HillmanL. W., eds. (Academic, 1990), pp. 287–343.
  13. Y. Lill and B. Hecht, “Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources,” Appl. Phys. Lett. 84, 1665–1667 (2004).
    [Crossref]
  14. A. Renn, J. Seelig, and V. Sandoghdar, “Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level,” Mol. Phys. 104, 409–414 (2006).
    [Crossref]
  15. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [Crossref] [PubMed]
  16. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, and J.-P. Boilot, “Toward millions of laser pulses with pyrromethen- and perylene-doped xerogels,” Appl. Opt. 36, 6760–6763 (1997).
    [Crossref]
  17. P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).
  18. F. Stracke, M. Heupel, and E. Thiel, “Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers,” J. Photochem. Photobiol. A 126, 51–58 (1999).
    [Crossref]
  19. F. Ye, M. M. Collinson, and D. A. Higgins, “What can be learned from single molecule spectroscopy? Applications to sol-gel derived silica materials,” Phys. Chem. Chem. Phys. 11, 66–82 (2003).
    [Crossref]

2011 (1)

2010 (1)

2009 (2)

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
[Crossref]

2008 (1)

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

2007 (1)

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

2006 (2)

R. Bornemann, U. Lemmer, and E. Thiel, “Continuous wave solid-state dye laser,” Opt. Lett. 31, 1669–1671 (2006).
[Crossref] [PubMed]

A. Renn, J. Seelig, and V. Sandoghdar, “Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level,” Mol. Phys. 104, 409–414 (2006).
[Crossref]

2004 (1)

Y. Lill and B. Hecht, “Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources,” Appl. Phys. Lett. 84, 1665–1667 (2004).
[Crossref]

2003 (2)

F. Ye, M. M. Collinson, and D. A. Higgins, “What can be learned from single molecule spectroscopy? Applications to sol-gel derived silica materials,” Phys. Chem. Chem. Phys. 11, 66–82 (2003).
[Crossref]

A. Costela, I. Garcia-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: Recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[Crossref]

2002 (1)

G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
[Crossref]

2001 (1)

C. Sanchez and B. Lebeau, “Design and properties of hybrid organic-inorganic nanocomposites for photonics,” MRS Bull. 26, 377–387 (2001).
[Crossref]

2000 (1)

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

1999 (1)

F. Stracke, M. Heupel, and E. Thiel, “Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers,” J. Photochem. Photobiol. A 126, 51–58 (1999).
[Crossref]

1997 (2)

Boilot, J.-P.

Bornemann, R.

Brun, A.

Burgess, K.

Canva, M.

Carlsson, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Chaput, F.

Cheben, P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Chiara, J. L.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

Chmyrov, A.

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

Collinson, M. M.

F. Ye, M. M. Collinson, and D. A. Higgins, “What can be learned from single molecule spectroscopy? Applications to sol-gel derived silica materials,” Phys. Chem. Chem. Phys. 11, 66–82 (2003).
[Crossref]

Costela, A.

M. E. Perez-Ojeda, C. Thivierge, V. Marting, A. Costela, K. Burgess, and I. Garcia-Moreno, “Highly efficient and photostable photonic materials from diiodinated BODIPY laser dyes,” Opt. Mater. Express 1, 243–251 (2011).
[Crossref]

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

A. Costela, I. Garcia-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: Recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[Crossref]

de Brito, H. F.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

de Castro, G. R.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

del Monte, F.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Eggeling, C.

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

Faloss, M.

Garcia, O.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

Garcia-Moreno, I.

M. E. Perez-Ojeda, C. Thivierge, V. Marting, A. Costela, K. Burgess, and I. Garcia-Moreno, “Highly efficient and photostable photonic materials from diiodinated BODIPY laser dyes,” Opt. Mater. Express 1, 243–251 (2011).
[Crossref]

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

A. Costela, I. Garcia-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: Recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[Crossref]

Garrido, L.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

Georges, P.

Gorman, A. A.

Goto, R.

Grover, C. P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Hamblett, I.

Hecht, B.

Y. Lill and B. Hecht, “Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources,” Appl. Phys. Lett. 84, 1665–1667 (2004).
[Crossref]

Heilemann, M.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Heupel, M.

F. Stracke, M. Heupel, and E. Thiel, “Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers,” J. Photochem. Photobiol. A 126, 51–58 (1999).
[Crossref]

Higgins, D. A.

F. Ye, M. M. Collinson, and D. A. Higgins, “What can be learned from single molecule spectroscopy? Applications to sol-gel derived silica materials,” Phys. Chem. Chem. Phys. 11, 66–82 (2003).
[Crossref]

Jones, G.

G. Jones, “Photochemistry of laser dyes: smart pixels,” in Dye Laser Principles, DuarteF. J.HillmanL. W., eds. (Academic, 1990), pp. 287–343.

Kaikuchida, H.

H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
[Crossref]

Kasper, R.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

King, T. A.

Lebeau, B.

C. Sanchez and B. Lebeau, “Design and properties of hybrid organic-inorganic nanocomposites for photonics,” MRS Bull. 26, 377–387 (2001).
[Crossref]

Lemmer, U.

Lill, Y.

Y. Lill and B. Hecht, “Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources,” Appl. Phys. Lett. 84, 1665–1667 (2004).
[Crossref]

Löfdahl, P.-A.

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

Mackenzie, J. D.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Martin, V.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

Martines, M. A. U.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

Marting, V.

Messaddeq, Y.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

Miyazaki, M.

Oki, Y.

Omi, S.

Perez-Ojeda, M. E.

Person, B.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Rahn, M. D.

Renn, A.

A. Renn, J. Seelig, and V. Sandoghdar, “Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level,” Mol. Phys. 104, 409–414 (2006).
[Crossref]

Ribeiro, S. J. L.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

Sanchez, C.

C. Sanchez and B. Lebeau, “Design and properties of hybrid organic-inorganic nanocomposites for photonics,” MRS Bull. 26, 377–387 (2001).
[Crossref]

Sandoghdar, V.

A. Renn, J. Seelig, and V. Sandoghdar, “Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level,” Mol. Phys. 104, 409–414 (2006).
[Crossref]

Saran, P. S.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

Sastre, R.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

A. Costela, I. Garcia-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: Recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[Crossref]

Sauer, M.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Schoonheydt, R. A.

G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
[Crossref]

Schulz-Ekloff, G.

G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
[Crossref]

Seelig, J.

A. Renn, J. Seelig, and V. Sandoghdar, “Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level,” Mol. Phys. 104, 409–414 (2006).
[Crossref]

Seidel, C. A. M.

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

Steinhauer, C.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Stracke, F.

F. Stracke, M. Heupel, and E. Thiel, “Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers,” J. Photochem. Photobiol. A 126, 51–58 (1999).
[Crossref]

Takahashi, M.

H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
[Crossref]

Thiel, E.

R. Bornemann, U. Lemmer, and E. Thiel, “Continuous wave solid-state dye laser,” Opt. Lett. 31, 1669–1671 (2006).
[Crossref] [PubMed]

F. Stracke, M. Heupel, and E. Thiel, “Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers,” J. Photochem. Photobiol. A 126, 51–58 (1999).
[Crossref]

Thivierge, C.

Tinnefeld, P.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Tokuda, Y.

H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
[Crossref]

Trastoy, B.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

van Duffel, B.

G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
[Crossref]

Vogelsang, J.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Watanabe, H.

Widengren, J.

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

Wöhrle, D.

G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
[Crossref]

Worsfold, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Yamashita, K.

Yang, Y.

Ye, F.

F. Ye, M. M. Collinson, and D. A. Higgins, “What can be learned from single molecule spectroscopy? Applications to sol-gel derived silica materials,” Phys. Chem. Chem. Phys. 11, 66–82 (2003).
[Crossref]

Yoko, T.

H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
[Crossref]

Adv. Funct. Mater. (2)

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. Garcia, A. Costela, and I. Garcia-Moreno, “Dye-Doped Polyhedral Oligomeric Silsequioxane (POSSP-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19, 3307–3316 (2009).
[Crossref]

H. Kaikuchida, M. Takahashi, Y. Tokuda, and T. Yoko, “Rewritable Holographic Structures Formed in Organic-Inorganic Hybrid Materials by Photothermal Processing,” Adv. Funct. Mater. 19, 2569–2576 (2009).
[Crossref]

Ang. Chem. Int. Ed. (1)

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, and P. Tinnefeld, “A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Ang. Chem. Int. Ed. 47, 5465–5469 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Lill and B. Hecht, “Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources,” Appl. Phys. Lett. 84, 1665–1667 (2004).
[Crossref]

J. Photochem. Photobiol. A (1)

F. Stracke, M. Heupel, and E. Thiel, “Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers,” J. Photochem. Photobiol. A 126, 51–58 (1999).
[Crossref]

J. Phys. Chem. A (1)

J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl, and C. A. M. Seidel, “Strategies to Improve Photostabilities in Ultrasensititve Fluorescence Spectroscopy,” J. Phys. Chem. A 111, 429–440 (2007).
[Crossref] [PubMed]

Microporous Mesoporous Mater. (1)

G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schoonheydt, “Chromophores and porous silicas and minerals: preparation and optical properties,” Microporous Mesoporous Mater. 51, 91–138 (2002).
[Crossref]

Mol. Phys. (1)

A. Renn, J. Seelig, and V. Sandoghdar, “Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level,” Mol. Phys. 104, 409–414 (2006).
[Crossref]

MRS Bull. (1)

C. Sanchez and B. Lebeau, “Design and properties of hybrid organic-inorganic nanocomposites for photonics,” MRS Bull. 26, 377–387 (2001).
[Crossref]

Nature (1)

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, “A photorefractive organically modified silica glass with high optical gain,” Nature 408, 63–67 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (2)

A. Costela, I. Garcia-Moreno, and R. Sastre, “Polymeric solid-state dye lasers: Recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[Crossref]

F. Ye, M. M. Collinson, and D. A. Higgins, “What can be learned from single molecule spectroscopy? Applications to sol-gel derived silica materials,” Phys. Chem. Chem. Phys. 11, 66–82 (2003).
[Crossref]

Other (2)

G. Jones, “Photochemistry of laser dyes: smart pixels,” in Dye Laser Principles, DuarteF. J.HillmanL. W., eds. (Academic, 1990), pp. 287–343.

P. S. Saran, M. A. U. Martines, H. F. de Brito, G. R. de Castro, Y. Messaddeq, and S. J. L. Ribeiro, “Rhodamine 6G encapsuled mesoporous silica channels,” in Advances in Science and Technology, VincenziniP.RighiniG., eds. (Trans Tech Publications Ltd., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used for photostability measurements. Two cylindrical lenses are used to illuminate the the sample with a 3 × 15 mm light-section.

Fig. 2
Fig. 2

Normalized luminescence intensity for Rh6G xerogels at ambient conditions, at 10−3 mbar and 10−6 mbar. Optical pumping at 532 nm with 100 mW. Vertical lines indicate the photostability EPS, which for the samble at 10−6 mbar can be extrapolated to 23 Wh.

Fig. 3
Fig. 3

Normalized luminescence intensity for Rh6G xerogels at ambient conditions (black line) and in near-oxygen-free atmoshpere (at 10−6 mbar and purified with Argon, red line).

Fig. 4
Fig. 4

Normalized luminescence intensity for Rh6G xerogels at ambient conditions (triangles) and in near-oxygen-free atmoshpere (at 10−6 mbar and purified with Argon, circles) after pulsed excitation at 530 nm. The solid lines correspond to monoexponential fits yielding time constants of 6.5(5) ns and 7.5(5) ns for the two samples respectively.

Tables (1)

Tables Icon

Table 1 Photostability of SSDs

Metrics