Abstract

Thin films made from a composite of the polymer polyvinyl-alcohol and cobalt oxide (Co3O4) nanoparticles were fabricated by spin coating. Linear and nonlinear optical properties of thin films with thicknesses of hundreds of nanometers were investigated. The refractive index and absorption coefficient were measured and two direct band gaps (Eg = 1.38 eV and 2.0 eV) were determined from the absorption spectrum. Reversed saturable absorption and saturable absorption were observed when the films were illuminated with the different fluences. Optical nonlinearities corresponding to reverse saturable absorption were measured by the z-scan technique. A nonlinear refractive index (n2) of ~10−10 cm2/W and nonlinear absorption (β) of ~103 cm/GW have been measured from 425 nm to 675 nm. The experimental results show that the Co3O4 nanoparticle/PVA composite is a promising material for nonlinear optical devices in the visible, since it takes advantages of the high optical nonlinearities of transition metal oxides and the superior mechanical properties and convenient fabrication properties of polymers.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films

Peng Zhou, Guanjun You, Jing Li, Songyou Wang, Shixiong Qian, and Liangyao Chen
Opt. Express 13(5) 1508-1514 (2005)

Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics

Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, and Ramesh Chandra
J. Opt. Soc. Am. A 35(5) 740-747 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
    [Crossref]
  2. T. Maruyama and S. Arai, “Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 143(4), 1383–1386 (1996).
    [Crossref]
  3. S. Tan, Y. Moro-Oka, and A. Ozaki, “Catalytic oxidation of olefin over oxide catalysts containing molybdenum. III. Oxidation of olefin to ketone over Co3O4-MoO3 and SnO2-MoO3 catalysts,” J. Catal. 17(2), 132–142 (1970).
    [Crossref]
  4. M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
    [Crossref]
  5. M. G. Hutchins, P. J. Wright, and P. D. Grebenik, “Comparison of different forms of black cobalt selective solar absorber surfaces,” Sol. Energy Mater. 16(1-3), 113–131 (1987).
    [Crossref]
  6. S. A. Makhlouf, “Magnatic properties of Co3O4 nanoparticles,” J. Magn. Magn. Mater. 246(1-2), 184–190 (2002).
    [Crossref]
  7. L. M. Apatiga and V. M. Castano, “Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor,” Thin Solid Films 496(2), 576–579 (2006).
    [Crossref]
  8. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
    [Crossref]
  9. P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films 272(1), 29–32 (1996).
    [Crossref]
  10. J. G. Cook and M. P. Van Der Meer, “The optical properties of sputtered Co3O4 films,” Thin Solid Films 144(2), 165–176 (1986).
    [Crossref]
  11. T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
    [Crossref]
  12. L. M. Da Silva, J. F. C. Boodts, and L. A. D. Faria, “Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution,” Electrochim. Acta 46(9), 1369–1375 (2001).
    [Crossref]
  13. F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
    [Crossref]
  14. C. Lin, J. A. Ritter, and B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc. 145(12), 4097–4103 (1998).
    [Crossref]
  15. I. G. Casella and M. Gatta, “Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions,” J. Electroanal. Chem. 534(1), 31–38 (2002).
    [Crossref]
  16. I. G. Casella, “Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes,” J. Electroanal. Chem. 520(1-2), 119–125 (2002).
    [Crossref]
  17. Z. G. Yu and B. C. Yang, “Morphotogical investigation on cobalt oxide powder prepared by wet chemical method,” Mater. Lett. 62(2), 211–214 (2008).
    [Crossref]
  18. X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
    [Crossref]
  19. H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
    [Crossref]
  20. H. Yamamoto, T. Naito, and K. Hirao, “Optical nonlinearity of sputtered Co3O4-SiO2-TiO2 thin films,” Mater. Res. Soc. Symp. Proc. 703, 523–527 (2002).
  21. K. E. Miedzinska, B. R. Hollebone, and J. G. Cook, “An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films,” J. Phys. Chem. Solids 48(7), 649–656 (1987).
    [Crossref]
  22. H. Yamamoto, S. Tanaka, and K. Hirao, “Nanostructure and optical nonlinearity of Cobalt oxide thin films,” J. Ceram. Soc. Jpn. 112, S876–S880 (2004).
  23. M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
    [Crossref]
  24. B. Gu, J. Chen, Y. Fan, J. Ding, and H. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 22(12), 2651–2659 (2005).
    [Crossref]

2010 (1)

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

2008 (1)

Z. G. Yu and B. C. Yang, “Morphotogical investigation on cobalt oxide powder prepared by wet chemical method,” Mater. Lett. 62(2), 211–214 (2008).
[Crossref]

2006 (2)

L. M. Apatiga and V. M. Castano, “Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor,” Thin Solid Films 496(2), 576–579 (2006).
[Crossref]

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

2005 (1)

2004 (2)

H. Yamamoto, S. Tanaka, and K. Hirao, “Nanostructure and optical nonlinearity of Cobalt oxide thin films,” J. Ceram. Soc. Jpn. 112, S876–S880 (2004).

M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
[Crossref]

2002 (5)

H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
[Crossref]

H. Yamamoto, T. Naito, and K. Hirao, “Optical nonlinearity of sputtered Co3O4-SiO2-TiO2 thin films,” Mater. Res. Soc. Symp. Proc. 703, 523–527 (2002).

S. A. Makhlouf, “Magnatic properties of Co3O4 nanoparticles,” J. Magn. Magn. Mater. 246(1-2), 184–190 (2002).
[Crossref]

I. G. Casella and M. Gatta, “Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions,” J. Electroanal. Chem. 534(1), 31–38 (2002).
[Crossref]

I. G. Casella, “Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes,” J. Electroanal. Chem. 520(1-2), 119–125 (2002).
[Crossref]

2001 (2)

L. M. Da Silva, J. F. C. Boodts, and L. A. D. Faria, “Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution,” Electrochim. Acta 46(9), 1369–1375 (2001).
[Crossref]

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

2000 (1)

F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
[Crossref]

1998 (1)

C. Lin, J. A. Ritter, and B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc. 145(12), 4097–4103 (1998).
[Crossref]

1997 (1)

M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
[Crossref]

1996 (2)

T. Maruyama and S. Arai, “Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 143(4), 1383–1386 (1996).
[Crossref]

P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films 272(1), 29–32 (1996).
[Crossref]

1995 (1)

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

1987 (2)

M. G. Hutchins, P. J. Wright, and P. D. Grebenik, “Comparison of different forms of black cobalt selective solar absorber surfaces,” Sol. Energy Mater. 16(1-3), 113–131 (1987).
[Crossref]

K. E. Miedzinska, B. R. Hollebone, and J. G. Cook, “An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films,” J. Phys. Chem. Solids 48(7), 649–656 (1987).
[Crossref]

1986 (1)

J. G. Cook and M. P. Van Der Meer, “The optical properties of sputtered Co3O4 films,” Thin Solid Films 144(2), 165–176 (1986).
[Crossref]

1970 (1)

S. Tan, Y. Moro-Oka, and A. Ozaki, “Catalytic oxidation of olefin over oxide catalysts containing molybdenum. III. Oxidation of olefin to ketone over Co3O4-MoO3 and SnO2-MoO3 catalysts,” J. Catal. 17(2), 132–142 (1970).
[Crossref]

Adschiri, T.

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

Ando, M.

M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
[Crossref]

M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
[Crossref]

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Apatiga, L. M.

L. M. Apatiga and V. M. Castano, “Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor,” Thin Solid Films 496(2), 576–579 (2006).
[Crossref]

Arai, S.

T. Maruyama and S. Arai, “Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 143(4), 1383–1386 (1996).
[Crossref]

Armelao, L.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Barreca, D.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Boodts, J. F. C.

L. M. Da Silva, J. F. C. Boodts, and L. A. D. Faria, “Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution,” Electrochim. Acta 46(9), 1369–1375 (2001).
[Crossref]

Casella, I. G.

I. G. Casella and M. Gatta, “Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions,” J. Electroanal. Chem. 534(1), 31–38 (2002).
[Crossref]

I. G. Casella, “Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes,” J. Electroanal. Chem. 520(1-2), 119–125 (2002).
[Crossref]

Castano, V. M.

L. M. Apatiga and V. M. Castano, “Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor,” Thin Solid Films 496(2), 576–579 (2006).
[Crossref]

Chen, J.

Cook, J. G.

K. E. Miedzinska, B. R. Hollebone, and J. G. Cook, “An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films,” J. Phys. Chem. Solids 48(7), 649–656 (1987).
[Crossref]

J. G. Cook and M. P. Van Der Meer, “The optical properties of sputtered Co3O4 films,” Thin Solid Films 144(2), 165–176 (1986).
[Crossref]

Da Silva, L. M.

L. M. Da Silva, J. F. C. Boodts, and L. A. D. Faria, “Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution,” Electrochim. Acta 46(9), 1369–1375 (2001).
[Crossref]

Daolio, S.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Ding, J.

Fabrizio, M.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Fan, Y.

Faria, L. A. D.

L. M. Da Silva, J. F. C. Boodts, and L. A. D. Faria, “Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution,” Electrochim. Acta 46(9), 1369–1375 (2001).
[Crossref]

Gatta, M.

I. G. Casella and M. Gatta, “Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions,” J. Electroanal. Chem. 534(1), 31–38 (2002).
[Crossref]

Grebenik, P. D.

M. G. Hutchins, P. J. Wright, and P. D. Grebenik, “Comparison of different forms of black cobalt selective solar absorber surfaces,” Sol. Energy Mater. 16(1-3), 113–131 (1987).
[Crossref]

Gu, B.

Haruta, M.

M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
[Crossref]

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Hirao, K.

H. Yamamoto, S. Tanaka, and K. Hirao, “Nanostructure and optical nonlinearity of Cobalt oxide thin films,” J. Ceram. Soc. Jpn. 112, S876–S880 (2004).

H. Yamamoto, T. Naito, and K. Hirao, “Optical nonlinearity of sputtered Co3O4-SiO2-TiO2 thin films,” Mater. Res. Soc. Symp. Proc. 703, 523–527 (2002).

H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
[Crossref]

Hollebone, B. R.

K. E. Miedzinska, B. R. Hollebone, and J. G. Cook, “An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films,” J. Phys. Chem. Solids 48(7), 649–656 (1987).
[Crossref]

Hutchins, M. G.

M. G. Hutchins, P. J. Wright, and P. D. Grebenik, “Comparison of different forms of black cobalt selective solar absorber surfaces,” Sol. Energy Mater. 16(1-3), 113–131 (1987).
[Crossref]

Iijima, S.

M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
[Crossref]

Kadam, L. D.

P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films 272(1), 29–32 (1996).
[Crossref]

Kadono, K.

M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
[Crossref]

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Kamada, K.

M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
[Crossref]

Kaucic, C. V.

F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
[Crossref]

Kobayashi, T.

M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
[Crossref]

Lau, P.

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

Lin, C.

C. Lin, J. A. Ritter, and B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc. 145(12), 4097–4103 (1998).
[Crossref]

Lokhande, C. D.

P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films 272(1), 29–32 (1996).
[Crossref]

Makhlouf, S. A.

S. A. Makhlouf, “Magnatic properties of Co3O4 nanoparticles,” J. Magn. Magn. Mater. 246(1-2), 184–190 (2002).
[Crossref]

Maruyama, T.

T. Maruyama and S. Arai, “Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 143(4), 1383–1386 (1996).
[Crossref]

Massignan, C.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Miedzinska, K. E.

K. E. Miedzinska, B. R. Hollebone, and J. G. Cook, “An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films,” J. Phys. Chem. Solids 48(7), 649–656 (1987).
[Crossref]

Miya, M.

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Moro-Oka, Y.

S. Tan, Y. Moro-Oka, and A. Ozaki, “Catalytic oxidation of olefin over oxide catalysts containing molybdenum. III. Oxidation of olefin to ketone over Co3O4-MoO3 and SnO2-MoO3 catalysts,” J. Catal. 17(2), 132–142 (1970).
[Crossref]

Mousavand, T.

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

Naito, T.

H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
[Crossref]

H. Yamamoto, T. Naito, and K. Hirao, “Optical nonlinearity of sputtered Co3O4-SiO2-TiO2 thin films,” Mater. Res. Soc. Symp. Proc. 703, 523–527 (2002).

Nguyen, D.

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

Norwood, R. A.

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

Ohara, S.

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

Ohta, K.

M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
[Crossref]

Orel, B.

F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
[Crossref]

Ozaki, A.

S. Tan, Y. Moro-Oka, and A. Ozaki, “Catalytic oxidation of olefin over oxide catalysts containing molybdenum. III. Oxidation of olefin to ketone over Co3O4-MoO3 and SnO2-MoO3 catalysts,” J. Catal. 17(2), 132–142 (1970).
[Crossref]

Patil, P. S.

P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films 272(1), 29–32 (1996).
[Crossref]

Peyghambarian, N.

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

Piccirillo, C.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Popov, B. N.

C. Lin, J. A. Ritter, and B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc. 145(12), 4097–4103 (1998).
[Crossref]

Ritter, J. A.

C. Lin, J. A. Ritter, and B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc. 145(12), 4097–4103 (1998).
[Crossref]

Sakaguchi, T.

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Svegel, I. G.

F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
[Crossref]

Svegl, F.

F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
[Crossref]

Takami, S.

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

Tan, S.

S. Tan, Y. Moro-Oka, and A. Ozaki, “Catalytic oxidation of olefin over oxide catalysts containing molybdenum. III. Oxidation of olefin to ketone over Co3O4-MoO3 and SnO2-MoO3 catalysts,” J. Catal. 17(2), 132–142 (1970).
[Crossref]

Tanaka, S.

H. Yamamoto, S. Tanaka, and K. Hirao, “Nanostructure and optical nonlinearity of Cobalt oxide thin films,” J. Ceram. Soc. Jpn. 112, S876–S880 (2004).

H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
[Crossref]

Tondello, E.

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Umetsu, M.

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

Van Der Meer, M. P.

J. G. Cook and M. P. Van Der Meer, “The optical properties of sputtered Co3O4 films,” Thin Solid Films 144(2), 165–176 (1986).
[Crossref]

Wang, H.

Wang, J.

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

Wright, P. J.

M. G. Hutchins, P. J. Wright, and P. D. Grebenik, “Comparison of different forms of black cobalt selective solar absorber surfaces,” Sol. Energy Mater. 16(1-3), 113–131 (1987).
[Crossref]

Yamamoto, H.

H. Yamamoto, S. Tanaka, and K. Hirao, “Nanostructure and optical nonlinearity of Cobalt oxide thin films,” J. Ceram. Soc. Jpn. 112, S876–S880 (2004).

H. Yamamoto, T. Naito, and K. Hirao, “Optical nonlinearity of sputtered Co3O4-SiO2-TiO2 thin films,” Mater. Res. Soc. Symp. Proc. 703, 523–527 (2002).

H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
[Crossref]

Yang, B. C.

Z. G. Yu and B. C. Yang, “Morphotogical investigation on cobalt oxide powder prepared by wet chemical method,” Mater. Lett. 62(2), 211–214 (2008).
[Crossref]

Yu, Z. G.

Z. G. Yu and B. C. Yang, “Morphotogical investigation on cobalt oxide powder prepared by wet chemical method,” Mater. Lett. 62(2), 211–214 (2008).
[Crossref]

Zhu, X.

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

Appl. Phys. Lett. (2)

X. Zhu, J. Wang, P. Lau, D. Nguyen, R. A. Norwood, and N. Peyghambarian, “Nonlinear optical performance of periodic structures made from composites of polymers and Co3O4 nanoparticles,” Appl. Phys. Lett. 97(9), 093503 (2010).
[Crossref]

H. Yamamoto, S. Tanaka, T. Naito, and K. Hirao, “Nonlinear change of refractive index of Co3O4 thin films induced by semiconductor laser (λ = 405 nm) irradiation,” Appl. Phys. Lett. 81(6), 999–1001 (2002).
[Crossref]

Chem. Mater. (1)

D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, “Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition,” Chem. Mater. 13(2), 588–593 (2001).
[Crossref]

Electrochim. Acta (2)

L. M. Da Silva, J. F. C. Boodts, and L. A. D. Faria, “Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution,” Electrochim. Acta 46(9), 1369–1375 (2001).
[Crossref]

F. Svegl, B. Orel, I. G. Svegel, and C. V. Kaucic, “Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route,” Electrochim. Acta 45(25-26), 4359–4371 (2000).
[Crossref]

J. Catal. (1)

S. Tan, Y. Moro-Oka, and A. Ozaki, “Catalytic oxidation of olefin over oxide catalysts containing molybdenum. III. Oxidation of olefin to ketone over Co3O4-MoO3 and SnO2-MoO3 catalysts,” J. Catal. 17(2), 132–142 (1970).
[Crossref]

J. Ceram. Soc. Jpn. (1)

H. Yamamoto, S. Tanaka, and K. Hirao, “Nanostructure and optical nonlinearity of Cobalt oxide thin films,” J. Ceram. Soc. Jpn. 112, S876–S880 (2004).

J. Electroanal. Chem. (2)

I. G. Casella and M. Gatta, “Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions,” J. Electroanal. Chem. 534(1), 31–38 (2002).
[Crossref]

I. G. Casella, “Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes,” J. Electroanal. Chem. 520(1-2), 119–125 (2002).
[Crossref]

J. Electrochem. Soc. (2)

C. Lin, J. A. Ritter, and B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc. 145(12), 4097–4103 (1998).
[Crossref]

T. Maruyama and S. Arai, “Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition,” J. Electrochem. Soc. 143(4), 1383–1386 (1996).
[Crossref]

J. Magn. Magn. Mater. (1)

S. A. Makhlouf, “Magnatic properties of Co3O4 nanoparticles,” J. Magn. Magn. Mater. 246(1-2), 184–190 (2002).
[Crossref]

J. Mater. Chem. (1)

M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, “Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films,” J. Mater. Chem. 7(9), 1779–1783 (1997).
[Crossref]

J. Mater. Sci. (1)

T. Mousavand, S. Takami, M. Umetsu, S. Ohara, and T. Adschiri, “Supercritical hydrothermal sythesis of organic-inorganic hybrid nanoparticles,” J. Mater. Sci. 41(5), 1445–1448 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

K. E. Miedzinska, B. R. Hollebone, and J. G. Cook, “An assignment of the optical absorption spectrum of mixed valence Co3O4 spinel films,” J. Phys. Chem. Solids 48(7), 649–656 (1987).
[Crossref]

Mater. Lett. (1)

Z. G. Yu and B. C. Yang, “Morphotogical investigation on cobalt oxide powder prepared by wet chemical method,” Mater. Lett. 62(2), 211–214 (2008).
[Crossref]

Mater. Res. Soc. Symp. Proc. (1)

H. Yamamoto, T. Naito, and K. Hirao, “Optical nonlinearity of sputtered Co3O4-SiO2-TiO2 thin films,” Mater. Res. Soc. Symp. Proc. 703, 523–527 (2002).

Nature (1)

M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995).
[Crossref]

Sol. Energy Mater. (1)

M. G. Hutchins, P. J. Wright, and P. D. Grebenik, “Comparison of different forms of black cobalt selective solar absorber surfaces,” Sol. Energy Mater. 16(1-3), 113–131 (1987).
[Crossref]

Thin Solid Films (4)

L. M. Apatiga and V. M. Castano, “Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor,” Thin Solid Films 496(2), 576–579 (2006).
[Crossref]

P. S. Patil, L. D. Kadam, and C. D. Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films 272(1), 29–32 (1996).
[Crossref]

J. G. Cook and M. P. Van Der Meer, “The optical properties of sputtered Co3O4 films,” Thin Solid Films 144(2), 165–176 (1986).
[Crossref]

M. Ando, K. Kadono, K. Kamada, and K. Ohta, “Third-order nonlinear optical response of nanoparticulate Co3O4 films,” Thin Solid Films 446(2), 271–276 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The transmission spectra of the PVA (black solid curve) and the three PVA:Co3O4 films [d = 500 nm, (red dashed curve); d = 570 nm (green dash-dotted curve); d = 720 nm (blue dotted curve)] and the absorption coefficient of PVA:Co3O4 composite (magenta short dashed curve)
Fig. 2
Fig. 2 Plot of (αhν)2 versus photon energy (hν) for the PVA:Co3O4 film. Band gaps of 1.38 eV and 2.0 eV are estimated by fitting the linear regions of the curve.
Fig. 3
Fig. 3 Refractive indices of the PVA (blue dashed curve) and PVA:Co3O4 films (black solid cure) obtained by ellipsometric measurement. Diamonds show results measured by the technique of prism coupling at wavelengths of 532 nm, 632.8 nm, and 800 nm.
Fig. 4
Fig. 4 Experimental setup for the nonlinear transmission measurement and the z-scan measurement.
Fig. 5
Fig. 5 Nonlinear transmission of the three PVA:Co3O4 films. Thickness d = 500 nm (red squares); thickness d = 570 nm (green diamonds); thickness d = 720 nm (blue triangles).
Fig. 6
Fig. 6 (a) Open aperture and (b) close aperture Z-Scan measurement results of the three PVA:Co3O4 films. Thickness d = 500 nm (red curve and squares); thickness d = 570 nm (green curve and diamonds); thickness d = 720 nm (blue curve and triangles).
Fig. 7
Fig. 7 (a) Open aperture Z-Scan measurement results for the 500 nm thick PVA:Co3O4 film pumped at different wavelengths: wavelength λ = 425 nm (black curve and squares); λ = 450 nm (red curve and circles); λ = 500 nm (green curve and upward triangles); λ = 550 nm (blue curve and downward triangles); λ = 600 nm (magenta curve and diamonds); λ = 650 nm (purple curve and stars); (b) Nonlinear absorption coefficients β for different wavelengths obtained by fitting the experimental results of the open aperture Z-scan measurement.

Metrics