Abstract

Achieving switchable and diversified functionalities in a single metasurface has garnered great research interest for potential terahertz applications. Here, we propose and demonstrate a phase-change metasurface that simultaneously supports broadband electromagnetically induced transparency (EIT) and broadband nearly perfect absorption, depending on the phase state of a phase change material-vanadium dioxide (VO2). The phase-change metasurface is composed of a VO2 nanofilm, a quartz spacer and gold split-square-ring resonators with VO2 nanopads embedded into the splits. When VO2 is in its insulating phase at room temperature, a broadband EIT window (maximum transmittance reaching 83%) with a bandwidth of 0.27 THz (relative bandwidth 30%) can be observed. Alternatively, when VO2 transforms into its fully metallic phase, the EIT functionality will be switched off and instead, the metasurface operates as a broadband absorber with the total absorption exceeding 93% and a bandwidth of 0.5 THz (relative bandwidth 74%). The electric and magnetic field distributions indicate that the broadband EIT stems from the bright-bright mode coupling and the broadband absorption arises from the excitation and superposition of two resonances within a metal-insulator-metal cavity. The design scheme is scalable from terahertz to infrared and optical frequencies, enabling new avenues towards switchable and multifunctional meta-devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave

Dexian Yan, Miao Meng, Jiusheng Li, Jining Li, and Xiangjun Li
Opt. Express 28(20) 29843-29854 (2020)

Spin-dependent switchable metasurfaces using phase change materials

Wenjie Chen, Rui Chen, Yi Zhou, Ruipin Chen, and Yungui Ma
Opt. Express 27(18) 25678-25687 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref]
  2. L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
    [Crossref]
  3. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref]
  4. S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
    [Crossref]
  5. X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for thz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
    [Crossref]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  7. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref]
  8. D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
    [Crossref]
  9. J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
    [Crossref]
  10. J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
    [Crossref]
  11. R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977 (2017).
    [Crossref]
  12. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref]
  13. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref]
  14. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
    [Crossref]
  15. S.-K. Tseng, H.-H. Hsiao, and Y.-P. Chiou, “Wide-angle wideband polarization-insensitive perfect absorber based on uniaxial anisotropic metasurfaces,” Opt. Mater. Express 10(5), 1193–1203 (2020).
    [Crossref]
  16. H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
    [Crossref]
  17. Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459 (2019).
    [Crossref]
  18. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  19. J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
    [Crossref]
  20. R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
    [Crossref]
  21. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  22. D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  23. Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
    [Crossref]
  24. B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
    [Crossref]
  25. H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
    [Crossref]
  26. L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
    [Crossref]
  27. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
    [Crossref]
  28. H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
    [Crossref]
  29. D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
    [Crossref]
  30. W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
    [Crossref]
  31. X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
    [Crossref]
  32. T. Wang, Y. Zhang, H. Zhang, and M. Cao, “Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial,” Opt. Mater. Express 10(2), 369–386 (2020).
    [Crossref]
  33. D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
    [Crossref]
  34. F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
    [Crossref]
  35. X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
    [Crossref]
  36. J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
    [Crossref]
  37. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  38. T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, and Y. Lu, “All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range,” Opt. Express 27(12), 16624–16634 (2019).
    [Crossref]
  39. C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
    [Crossref]
  40. Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
    [Crossref]
  41. P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36(10), 1927–1929 (2011).
    [Crossref]
  42. M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
    [Crossref]
  43. B.-X. Wang, W.-Q. Huang, and L.-L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
    [Crossref]
  44. Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
    [Crossref]
  45. Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
    [Crossref]
  46. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [Crossref]

2020 (3)

2019 (8)

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459 (2019).
[Crossref]

T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, and Y. Lu, “All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range,” Opt. Express 27(12), 16624–16634 (2019).
[Crossref]

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

2018 (10)

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

2017 (6)

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7(3), 977 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]

B.-X. Wang, W.-Q. Huang, and L.-L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

2016 (6)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

2015 (2)

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

2013 (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

2012 (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36(10), 1927–1929 (2011).
[Crossref]

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

2009 (1)

2008 (1)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

2006 (1)

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Ako, R. T.

Anwar, M. S.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Ardron, M.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for thz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[Crossref]

Bai, G. D.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Bozhevolnyi, S. I.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Brändli, V.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Brener, I.

Briere, G.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Cai, J.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Cao, M.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chan, K.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Cheah, K. W.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Chen, H.-T.

Chen, J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Chen, J.-W.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, M.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Chen, M. K.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, S.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Chen, X.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Chen, X. Q.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Chen, Y. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, Z.

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

Cheng, H.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Chenot, S.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Chiou, Y.-P.

Choi, H.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Chu, C. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chu, W.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Chung, T. L.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Cui, T. J.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Cummer, S. A.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Damilano, B.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Ding, F.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

Dong, F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Dong, K.

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

Fan, K.

Fang, X.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Feng, X.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

Feng, Z.

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Genevet, P.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gong, Q.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Guan, H.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Gui, X.

Han, J.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

He, H.

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

He, X.

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

Héron, S.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Hong, Z.

Hsiao, H.-H.

Hu, B.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Hu, J.

Huang, K.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Huang, Q.

Huang, W.

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Huang, W.-Q.

B.-X. Wang, W.-Q. Huang, and L.-L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Huang, Y.-T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Huang, Z.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Jiang, J.

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

Jiang, T.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

Jin, B.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Jing, X.

Jo, H.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Jung, H.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Justice, B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kang, M. S.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

Kim, B.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Kim, I.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Ko, C.

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Kuo, H. Y.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Lang, T.

Lee, D.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Lee, H.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Lee, W.

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

Li, G.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Li, H.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Li, J.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Li, K. F.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Li, Q.-T.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Li, S.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Li, T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Li, X.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

Li, Y.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Li, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Lin, R. J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Lin, X.

Liu, H.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

Liu, J.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Liu, Q. H.

Liu, W.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Liu, X.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Liu, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Lu, G.

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

Lu, Y.

T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, and Y. Lu, “All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range,” Opt. Express 27(12), 16624–16634 (2019).
[Crossref]

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Luk’yanchuk, B.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Luo, H.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

Ma, Q.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Ma, T.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Maier, S. A.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Mandal, P.

Mao, M.

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Mehmood, M.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Mehmood, M. Q.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Mei, S.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Miroshnichenko, A.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

Mock, J.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Nam, K. T.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Neshev, D.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

Ni, P.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

O’Hara, J. F.

Ou, Y.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Padilla, W. J.

Pan, C.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Pendry, J. B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Peralta, X. G.

Pun, E. Y. B.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Qi, J.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Qiu, C.-W.

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Qiu, D.-H.

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

Qiu, M.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

Qu, Y.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

Rahmani, M.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

Ramanathan, S.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Ren, H.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Rho, J.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Saleem, M.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Sawant, R.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Schurig, D.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Shadrivov, I. V.

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

Shen, C.

Shi, G.

Shi, Q.

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Smirnova, E. I.

Smith, D.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Song, Z.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Speck, A.

Sriram, S.

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Starr, A.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Su, V.-C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Sun, C.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Sun, D.-D.

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

Sun, S.

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Tan, W.

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Tang, S.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

Tang, Y.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for thz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tian, C.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Tian, J.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Tian, Y.

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tsai, D. P.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Tseng, S.-K.

Tu, M.

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Vézian, S.

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

Wang, B.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Wang, B.-X.

B.-X. Wang, W.-Q. Huang, and L.-L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Wang, D.-C.

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Wang, J.-H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Wang, K.

Wang, L.-L.

B.-X. Wang, W.-Q. Huang, and L.-L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Wang, Q.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Wang, R.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Wang, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Wang, T.

Wang, X.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Wang, Y.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Wang, Z.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

Wei, X.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Wen, D.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Wen, Q.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Wen, Q.-Y.

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

Wong, P. W. H.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Wu, F.

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

Wu, H. T.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Wu, J.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Wu, P.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Wu, P. C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Wu, Q.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Wu, R. Y.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Xia, R.

Xiao, Y.-F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Xiong, X.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Xu, J.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Xu, L.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Xu, Q.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Yan, J.

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Yang, D.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Yang, Y.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

Yin, H.

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Ying, G.

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

Yu, H.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yu, P.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Yue, F.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Zentgraf, T.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

Zhang, C.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Zhang, F.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Zhang, H.

Zhang, H.-W.

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

Zhang, J.

Zhang, L.

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Zhang, M.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Zhang, Q.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

Zhang, S.

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, W.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, X.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, X.-X.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

Zhang, Y.

T. Wang, Y. Zhang, H. Zhang, and M. Cao, “Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial,” Opt. Mater. Express 10(2), 369–386 (2020).
[Crossref]

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

Zhao, D.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

Zhao, H.

Zhao, W.

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

Zhao, Y.

Zhao, Z.

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Zheng, G.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

Zhong, S.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Zhou, G.

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

Zhou, J.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Zhu, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Zi, J.

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Q. Shi, W. Huang, Y. Zhang, J. Yan, Y. Zhang, M. Mao, Y. Zhang, and M. Tu, “Giant phase transition properties at terahertz range in vo2 films deposited by sol–gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[Crossref]

ACS Nano (2)

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric meta-holograms enabled with dual magnetic resonances in visible light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref]

ACS Photonics (1)

S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, and S. Zhang, “Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces,” ACS Photonics 5(5), 1671–1675 (2018).
[Crossref]

Adv. Funct. Mater. (1)

L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, and T. J. Cui, “Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves,” Adv. Funct. Mater. 28(33), 1802205 (2018).
[Crossref]

Adv. Opt. Mater. (4)

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, and H. Lee, “Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling,” Adv. Opt. Mater. 7(2), 1801205 (2019).
[Crossref]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, G. Li, S. Zhang, and X. Chen, “Metasurface device with helicity-dependent functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
[Crossref]

Appl. Phys. Lett. (3)

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

D.-C. Wang, S. Sun, Z. Feng, W. Tan, and C.-W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Chin. Phys. Lett. (1)

Z. Chen, Q.-Y. Wen, K. Dong, D.-D. Sun, D.-H. Qiu, and H.-W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (1)

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Nanophotonics (1)

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Nat. Commun. (3)

H. Ren, G. Briere, X. Fang, P. Ni, R. Sawant, S. Héron, S. Chenot, S. Vézian, B. Damilano, V. Brändli, S. A. Maier, and P. Genevet, “Metasurface orbital angular momentum holography,” Nat. Commun. 10(1), 2986 (2019).
[Crossref]

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy ge2sb2te5,” Nat. Commun. 10(1), 396 (2019).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Nat. Nanotechnol. (1)

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (3)

Photonics Res. (1)

W. Liu, B. Hu, Z. Huang, H. Guan, H. Li, X. Wang, Y. Zhang, H. Yin, X. Xiong, J. Liu, and Y. Wang, “Graphene-enabled electrically controlled terahertz meta-lens,” Photonics Res. 6(7), 703 (2018).
[Crossref]

Phys. Rev. Appl. (2)

C. Zhang, G. Zhou, J. Wu, Y. Tang, Q. Wen, S. Li, J. Han, B. Jin, J. Chen, and P. Wu, “Active control of terahertz waves using vanadium-dioxide-embedded metamaterials,” Phys. Rev. Appl. 11(5), 054016 (2019).
[Crossref]

J. Zi, Y. Li, X. Feng, Q. Xu, H. Liu, X.-X. Zhang, J. Han, and W. Zhang, “Dual-functional terahertz waveplate based on all-dielectric metamaterial,” Phys. Rev. Appl. 13(3), 034042 (2020).
[Crossref]

Phys. Rev. B (1)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

RSC Adv. (2)

X. He, Q. Zhang, G. Lu, G. Ying, F. Wu, and J. Jiang, “Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials,” RSC Adv. 6(57), 52212–52218 (2016).
[Crossref]

B.-X. Wang, W.-Q. Huang, and L.-L. Wang, “Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications,” RSC Adv. 7(68), 42956–42963 (2017).
[Crossref]

Sci. Rep. (4)

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, “Surface enhancement of thz wave by coupling a subwavelength linbo3 slab waveguide with a composite antenna structure,” Sci. Rep. 7(1), 17602 (2017).
[Crossref]

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) 3D schematic view of phase-change metasurfaces with switchable and diverse functionalities. Incident terahertz wave is normally irradiated with polarization along x-axis. (b) Top view and (c) side view of the unit cell of the metasurface. The optimized geometrical dimensions are px= py= 135 µm, g1 = 30 µm, g2 = g3 = 10 µm, l = 90 µm, w = 1 µm, d = 15 µm, t1 = 350 nm, t2 = 60 µm, and t3 = 500 nm, respectively.
Fig. 2.
Fig. 2. (a) Transmittance spectra and (b) group delay of the phase-change metasurface with respect to conductivity of VO2. The proposed metasurface functions as a broadband switchable EIT when VO2 is at insulating phase.
Fig. 3.
Fig. 3. Absorptance spectra of the proposed phase-change metasurfaces with respect to conductivity of VO2. The proposed metasurface functions as a broadband switchable absorber when VO2 is at metallic phase.
Fig. 4.
Fig. 4. (a) Transmittance spectra of the sole LSRs, the sole USRs and their combined SSRRs, respectively. The amplitudes of total electric field distributions |E| in the SSRRs at (b) 0.71 THz, (c) 1.07 THz, and (d) 0.89 THz, respectively. Broadband EIT window is achieved due to the coupling between the resonances of LSRs and USRs, when VO2 is at the insulating phase.
Fig. 5.
Fig. 5. (a) Amplitudes of x-component of the total electric field |Ex| at f = 0.50 THz and f = 0.89 THz in the x-y plane when VO2 is in its metallic states with σ = 2×105 S/m. (b) Amplitudes of y-component of the total magnetic field |Hy| at f = 0.50 THz and f = 0.89 THz in the x-z plane with the corresponding y-axis positions of Y1 depicted in the right schematic (c). Broadband absorption is achieved due to the excitation and superposition of two resonance modes within the MIM cavity, when VO2 is at the metallic phase.
Fig. 6.
Fig. 6. (a) Absorptance spectra and of (b) impedance of metasurface when the top SSRRs are either hybrid designs (gold with VO2 in the splits) or purely VO2 square-ring resonators (VO2 conductivity 2×105 S/m), respectively. Compare with purely VO2 square-ring resonators, the hybrid design provides stronger confinement of the incident terahertz wave as well as better impedance matching condition, leading to higher broadband absorption efficiency.
Fig. 7.
Fig. 7. (a) Transmittance and (b) absorptance spectra of the phase-change metasurfaces for d = 0, 5, 15, 25 µm, with the corresponding VO2 conductivity of 200 S/m (insulating phase) and 2×105 S/m (metallic phase), respectively. (c) Transmittance and (d) absorptance spectra of the phase-change metasurfaces for w = 0.5, 1, 2, 5 µm, with the corresponding VO2 conductivity of 200 S/m (insulating phase) and 2×105 S/m (metallic phase), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = ε i i ω p 2 ω ( ω + i / τ )
ω p 2 = σ / ε 0 τ
Z = ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 + S 21 2

Metrics