Abstract

The precise characterisation of the ground state absorption cross section around 800 nm for Nd:YAG from room temperature to liquid nitrogen temperature is presented. These results enabled the measurement of the energy transfer upconversion macroparameter over the same temperature range for 0.3at.%- and 0.6at.%-doped samples via a simple automated z-scan technique. The main absorption cross section peak at 808 nm is found to increase from (6.90 ± 0.30) pm2 at the highest, to (42.30 ± 2.10) pm2 at the lowest temperatures. Over the same range, the energy transfer upconversion parameter increases from (21.5 ± 2.3) 10−18 cm3/s to (52.6 ± 2.5) 10−18 cm3/s and from (36.0 ± 2.8) 10−18 cm3/s to (65.7 ± 1.9) 10−18 cm3/s, for the 0.3at.%- and 0.6at.%-doped crystals, respectively. Although energy transfer upconversion is known to limit room temperature operation on the 946 nm transition for this laser, we demonstrate that when the crystal is cooled to liquid nitrogen temperature, despite a twofold increase in the macroparameter, it has a negligible effect on performance.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. 169(B), 426–439 (2016).
    [Crossref]
  2. T. Y. Fan, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  3. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
    [Crossref]
  4. W. A. Clarkson, R. Koch, and D. C. Hanna, “Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm,” Opt. Lett. 21(10), 737–739 (1996).
    [Crossref]
  5. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
    [Crossref]
  6. R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, “Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm,” Opt. Lett. 31(12), 1869–1871 (2006).
    [Crossref]
  7. X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
    [Crossref]
  8. P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
    [Crossref]
  9. J. Gao, J. Speiser, and A. Giesen, “25 W diode-pumped continuous-wave quasi-three-level Nd:YAG thin disk laser,” Adv. Solid State Photonics 98(Paper 593), (2005).
  10. S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Appl. Opt. 22(3), 494–498 (2012).
    [Crossref]
  11. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  12. S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
    [Crossref]
  13. C. Y. Cho, T. L. Huang, H. P. Cheng, K. F. Huang, and Y. F. Chen, “Analysis of the optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm,” Opt. Express 24(1), 1–8 (2016).
    [Crossref]
  14. R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the elevated temperature dependence of upconversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21(1), 329–336 (2015).
    [Crossref]
  15. S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie, “Concentration dependence of energy transfer upconversion in Nd:YAG,” Opt. Mater. Express 5(5), 926–931 (2015).
    [Crossref]
  16. S. Cante, S. J. Beecher, and J. I. Mackenzie, “Characterising energy transfer upconversion in Nd-doped vanadates at elevated temperatures,” Opt. Express 26(6), 6478–6489 (2018).
    [Crossref]
  17. S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
    [Crossref]
  18. J. O. White and C. E. Mungan, “Measurement of up-conversion in Er:YAG via z-scan,” J. Opt. Soc. Am. B 28(10), 2358–2361 (2011).
    [Crossref]
  19. W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
    [Crossref]
  20. H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd:YAG with low temperatures,” IEEE QE 40(5), 499–504 (2004).
    [Crossref]
  21. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  22. S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
    [Crossref]
  23. S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
    [Crossref]
  24. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express 17(14), 11935–11943 (2009).
    [Crossref]
  25. L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123(12), 273 (2017).
    [Crossref]

2019 (1)

S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
[Crossref]

2018 (1)

2017 (1)

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123(12), 273 (2017).
[Crossref]

2016 (3)

C. Y. Cho, T. L. Huang, H. P. Cheng, K. F. Huang, and Y. F. Chen, “Analysis of the optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm,” Opt. Express 24(1), 1–8 (2016).
[Crossref]

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. 169(B), 426–439 (2016).
[Crossref]

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

2015 (2)

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the elevated temperature dependence of upconversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21(1), 329–336 (2015).
[Crossref]

S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie, “Concentration dependence of energy transfer upconversion in Nd:YAG,” Opt. Mater. Express 5(5), 926–931 (2015).
[Crossref]

2014 (2)

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

2013 (1)

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

2012 (1)

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Appl. Opt. 22(3), 494–498 (2012).
[Crossref]

2011 (2)

J. O. White and C. E. Mungan, “Measurement of up-conversion in Er:YAG via z-scan,” J. Opt. Soc. Am. B 28(10), 2358–2361 (2011).
[Crossref]

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

2007 (1)

T. Y. Fan, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

2005 (1)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

2004 (2)

S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
[Crossref]

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd:YAG with low temperatures,” IEEE QE 40(5), 499–504 (2004).
[Crossref]

1998 (1)

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

1996 (1)

Allen, G. S.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Aubry, N.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Balembois, F.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Beecher, S. J.

Bell, M. J. V.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Bjurshagen, S.

Brown, D. C.

Cante, S.

S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
[Crossref]

S. Cante, S. J. Beecher, and J. I. Mackenzie, “Characterising energy transfer upconversion in Nd-doped vanadates at elevated temperatures,” Opt. Express 26(6), 6478–6489 (2018).
[Crossref]

Catunda, T.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Chen, Y. F.

Cheng, H. P.

Cho, C. Y.

Cini, L.

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123(12), 273 (2017).
[Crossref]

Clarkson, W. A.

Dantas, N. O.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Dawson, J. W.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Delen, X.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Didierjean, J.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Drachenberg, D. R.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Dubinskii, M.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Fornasiero, L.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Gao, J.

J. Gao, J. Speiser, and A. Giesen, “25 W diode-pumped continuous-wave quasi-three-level Nd:YAG thin disk laser,” Adv. Solid State Photonics 98(Paper 593), (2005).

Georges, P.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Giesen, A.

J. Gao, J. Speiser, and A. Giesen, “25 W diode-pumped continuous-wave quasi-three-level Nd:YAG thin disk laser,” Adv. Solid State Photonics 98(Paper 593), (2005).

Glur, H.

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd:YAG with low temperatures,” IEEE QE 40(5), 499–504 (2004).
[Crossref]

Graf, T.

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd:YAG with low temperatures,” IEEE QE 40(5), 499–504 (2004).
[Crossref]

Guelzow, J.

Hanna, D. C.

Huang, K. F.

Huang, T. L.

Huber, G.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Khitrov, V. V.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Kim, J. W.

Koch, R.

Kowalewski, K.

Kück, S.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Lavi, R.

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd:YAG with low temperatures,” IEEE QE 40(5), 499–504 (2004).
[Crossref]

Li, E.

Li, H.

Lima, W. J.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Lupei, A.

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. 169(B), 426–439 (2016).
[Crossref]

Lupei, V.

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. 169(B), 426–439 (2016).
[Crossref]

Mackenzie, J. I.

S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
[Crossref]

S. Cante, S. J. Beecher, and J. I. Mackenzie, “Characterising energy transfer upconversion in Nd-doped vanadates at elevated temperatures,” Opt. Express 26(6), 6478–6489 (2018).
[Crossref]

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123(12), 273 (2017).
[Crossref]

S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie, “Concentration dependence of energy transfer upconversion in Nd:YAG,” Opt. Mater. Express 5(5), 926–931 (2015).
[Crossref]

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the elevated temperature dependence of upconversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21(1), 329–336 (2015).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Appl. Opt. 22(3), 494–498 (2012).
[Crossref]

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express 17(14), 11935–11943 (2009).
[Crossref]

Martial, I.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Martins, V. M.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Messerly, M. J.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Messias, D. N.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Mix, E.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

Monte, A. F. G.

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

Mungan, C. E.

Ng, S. P.

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Appl. Opt. 22(3), 494–498 (2012).
[Crossref]

Pax, P. H.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

Sangla, D.

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Singley, J. M.

Speiser, J.

J. Gao, J. Speiser, and A. Giesen, “25 W diode-pumped continuous-wave quasi-three-level Nd:YAG thin disk laser,” Adv. Solid State Photonics 98(Paper 593), (2005).

Valle, S.

S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
[Crossref]

Vitali, V.

Wang, P.

Ward, B.

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

White, J. O.

Yan, R. P.

S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie, “Concentration dependence of energy transfer upconversion in Nd:YAG,” Opt. Mater. Express 5(5), 926–931 (2015).
[Crossref]

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the elevated temperature dependence of upconversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21(1), 329–336 (2015).
[Crossref]

Yao, J.

Yoon, S. J.

S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
[Crossref]

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the elevated temperature dependence of upconversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21(1), 329–336 (2015).
[Crossref]

S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie, “Concentration dependence of energy transfer upconversion in Nd:YAG,” Opt. Mater. Express 5(5), 926–931 (2015).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

Zhou, R.

Appl. Opt. (2)

S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
[Crossref]

S. P. Ng and J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Appl. Opt. 22(3), 494–498 (2012).
[Crossref]

Appl. Phys. B (6)

X. Delen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Appl. Phys. B 24(25), 28633–28647 (2016).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

S. Kück, L. Fornasiero, E. Mix, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3,” Appl. Phys. B 67(2), 151–156 (1998).
[Crossref]

S. Cante, S. Valle, S. J. Yoon, and J. I. Mackenzie, “60-W 946-nm cryogenically-cooled Nd:YAG laser,” Appl. Phys. B 125(7), 135 (2019).
[Crossref]

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123(12), 273 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

R. P. Yan, S. J. Yoon, S. J. Beecher, and J. I. Mackenzie, “Measuring the elevated temperature dependence of upconversion in Nd:YAG,” IEEE J. Sel. Top. Quantum Electron. 21(1), 329–336 (2015).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

IEEE QE (1)

H. Glur, R. Lavi, and T. Graf, “Reduction of thermally induced lenses in Nd:YAG with low temperatures,” IEEE QE 40(5), 499–504 (2004).
[Crossref]

J. Lumin. (1)

V. Lupei and A. Lupei, “Nd:YAG at its 50th anniversary: Still to learn,” J. Lumin. 169(B), 426–439 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (2)

W. J. Lima, V. M. Martins, A. F. G. Monte, D. N. Messias, N. O. Dantas, M. J. V. Bell, and T. Catunda, “Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique,” Opt. Mater. Express 35(9), 1724–1727 (2013).
[Crossref]

S. J. Yoon, R. P. Yan, S. J. Beecher, and J. I. Mackenzie, “Concentration dependence of energy transfer upconversion in Nd:YAG,” Opt. Mater. Express 5(5), 926–931 (2015).
[Crossref]

Proc. SPIE (1)

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

Other (1)

J. Gao, J. Speiser, and A. Giesen, “25 W diode-pumped continuous-wave quasi-three-level Nd:YAG thin disk laser,” Adv. Solid State Photonics 98(Paper 593), (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Absorption cross section measurement setup. (b) Raw data for the probe’s incident spectrum (black) and transmitted spectra (red and blue) for RT and LNT, respectively.
Fig. 2.
Fig. 2. (a) Automated ETU measurement setup. Tested crystal enclosed in the cryo-chamber and held at fixed temperatures between (RT-LNT). Lenses: L$_1$ ($f=50\ mm$), L$_2$ ($f=300\ mm$, or $f=100\ mm$), L$_3$ ($f=200\ mm$), L$_4$ ($f=175\ mm$); high reflectivity mirrors at $808\ nm$: M$_1$ and M$_2$; glass wedges: W$_1$ and W$_2$; Si photodiodes: Reference PD, Transmission PD. (b) Sample z-scan experimental (circles and triangles) and theoretical (red and green) transmission curves for 0.3at.%-doped Nd:YAG at RT and LNT, respectively.
Fig. 3.
Fig. 3. Measured absorption cross section spectra in Nd:YAG for temperatures from RT to LNT.
Fig. 4.
Fig. 4. $808\ nm$ absorption cross section strongest peak, detail.
Fig. 5.
Fig. 5. Measured $808\ nm$ peak amplitude and bandwidth vs low-temperatures, and their respective quadratic fits.
Fig. 6.
Fig. 6. ETU parameter vs sub-ambient temperatures and quadratic fits for 0.30at.% and 0.57at.% doped Nd:YAG.
Fig. 7.
Fig. 7. Spectral overlap between the emission transition $^4F_{3/2} \rightarrow ^4I_{11/2}$ (solid coloured lines, from [17]) and the 10x-magnified ESA transition $^4F_{3/2} \rightarrow ^4G_{9/2}$ (red dashed line, from [22]).
Fig. 8.
Fig. 8. Calculated laser threshold vs cryo-temperatures, including and not including ETU effects, for 0.3at.%-, 0.6at.%-, and 1.07at.%-doped Nd:YAG, according to [5].
Fig. 9.
Fig. 9. Figure-of-merit $F_q$ as defined in [24] vs cryo-temperatures for 0.3at.%-, 0.6at.%-, and 1.07at.%-doped Nd:YAG.

Tables (2)

Tables Icon

Table 1. Coefficients for the second degree polynominal fitting curves in Fig. 5.

Tables Icon

Table 2. Coefficients for the second degree polynominal fitting curves in Fig. 6.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α a b s ( λ ) N 0 = σ a b s ( λ ) C % = ln ( I i n ( λ ) I o u t ( λ ) ) N 0 l R
C % = 1 M i = 1 M c % , i = 1 M i = 1 M α a b s ( λ i ) σ a b s ( λ i ) N 0
Δ C % = 1 M 1 i = 1 M | c % , i C % | 2
N 1 ( r , z ) t = I p ( r , z ) h ν p σ a b s N 1 ( r , z ) + N 2 ( r , z ) τ 0 + W E T U N 2 ( r , z ) 2 W C R N 1 ( r , z ) N 2 ( r , z )
N 2 ( r , z ) t = I p ( r , z ) h ν p σ a b s N 1 ( r , z ) N 2 ( r , z ) τ 0 W E T U N 2 ( r , z ) 2 + W C R N 1 ( r , z ) N 2 ( r , z )
d I p ( r , z ) d z = I p ( r , z ) ( σ a b s N 1 ( r , z ) )
W E T U ( C % , T ) m ( C % ) O ( T )   c m 3 / s
F q = 4 ( σ a b s + σ e m ) W E T U τ 0 α P
P t h ( w i t h   E T U ) = P t h ( w i t h o u t   E T U ) [ 1 + L T + 2 η L P f 1 σ e m N t l R F q η L P ]

Metrics