Abstract

Periodically poled second-order nonlinear materials with submicrometer periods are important for the development of quasi-phase matched backward-wave nonlinear optical processes. Interactions involving counter-propagating waves exhibit many unique properties and enable devices such as backward second harmonic generators, mirrorless optical parametric oscillators, and narrow-band quantum entangled photon sources. Fabrication of dense ferroelectric domain gratings in lithium niobate remains challenging, however, due to lateral domain spreading and merging. Here, we report submicrometer periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films. Electric-field poling is performed using multiple bipolar preconditioning pulses that improve the poling yield and domain uniformity. The internal field is found to decrease with each preconditioning poling cycle. The poled domains are characterized by piezoresponse force microscopy. A fundamental period of 747 nm is achieved.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, “Nonlinear frequency conversion in periodically-poled ferroelectric waveguides,” in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch, eds. (Springer Netherlands, 1992), pp. 133–145.
    [Crossref]
  2. V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
    [Crossref]
  3. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
    [Crossref]
  4. M. Matsumoto and K. Tanaka, “Quasi-phase-matched second-harmonic generation by backward propagating interaction,” IEEE J. Quantum Electron. 31(4), 700–705 (1995).
    [Crossref]
  5. G. D’Alessandro, P. S. J. Russell, and A. A. Wheeler, “Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator,” Phys. Rev. A 55(4), 3211–3218 (1997).
    [Crossref]
  6. M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
    [Crossref]
  7. Y. J. Ding and J. B. Khurgin, “Second-harmonic generation based on quasi-phase matching: a novel configuration,” Opt. Lett. 21(18), 1445–1447 (1996).
    [Crossref]
  8. G. D. Landry and T. A. Maldonado, “Switching and second harmonic generation using counterpropagating quasi-phase-matching in a mirrorless configuration,” J. Lightwave Technol. 17(2), 316–327 (1999).
    [Crossref]
  9. G. D. Landry and T. A. Maldonado, “Efficient nonlinear phase shifts due to cascaded second-order processes in a counterpropagating quasi-phase-matched configuration,” Opt. Lett. 22(18), 1400–1402 (1997).
    [Crossref]
  10. K. Y. Kolossovski, A. V. Buryak, and R. A. Sammut, “Quadratic solitary waves in a counterpropagating quasi-phase-matched configuration,” Opt. Lett. 24(12), 835–837 (1999).
    [Crossref]
  11. M. Conforti, C. de Angelis, U. K. Sapaev, and G. Assanto, “Pulse shaping via backward second harmonic generation,” Opt. Express 16(3), 2115–2121 (2008).
    [Crossref]
  12. J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72(2), 023810 (2005).
    [Crossref]
  13. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-I PDC with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
    [Crossref]
  14. C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A 83(6), 061803 (2011).
    [Crossref]
  15. K.-H. Luo, V. Ansari, M. Massaro, M. Santandrea, C. Eigner, R. Ricken, H. Herrmann, and C. Silberhorn, “Counter-propagating photon pair generation in a nonlinear waveguide,” Opt. Express 28(3), 3215–3225 (2020).
    [Crossref]
  16. Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).
  17. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
    [Crossref]
  18. Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B 96(4), 787–791 (2009).
    [Crossref]
  19. X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181(1-3), 153–159 (2000).
    [Crossref]
  20. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
    [Crossref]
  21. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
    [Crossref]
  22. R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
    [Crossref]
  23. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
    [Crossref]
  24. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
    [Crossref]
  25. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
    [Crossref]
  26. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
    [Crossref]
  27. E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
    [Crossref]
  28. D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
    [Crossref]
  29. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
    [Crossref]
  30. X. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, “Backward second-harmonic generation in periodically poled lithium niobate,” J. Opt. Soc. Am. B 15(5), 1561–1566 (1998).
    [Crossref]
  31. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk LiNbO3,” Opt. Lett. 22(12), 862–864 (1997).
    [Crossref]
  32. S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
    [Crossref]
  33. A. C. Busacca, S. Stivala, L. Curcio, A. Tomasino, and G. Assanto, “Backward frequency doubling of near infrared picosecond pulses,” Opt. Express 22(7), 7544–7549 (2014).
    [Crossref]
  34. T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
    [Crossref]
  35. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  36. J. T. Nagy and R. M. Reano, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films,” Opt. Mater. Express 9(7), 3146–3155 (2019).
    [Crossref]
  37. J. T. Nagy and R. M. Reano, “Fabricating periodically poled lithium niobate thin films with sub-micrometer fundamental period,” in Frontiers in Optics + Laser Science APS/DLS (Optical Society of America, 2019), p. JTu3A.10.
    [Crossref]
  38. H. F. Kay and J. W. Dunn, “Thickness dependence of the nucleation field of triglycine sulphate,” Philos. Mag. 7(84), 2027–2034 (1962).
    [Crossref]
  39. V. Janovec, “On the theory of the coercive field of single-domain crystals of BaTiO3,” Czech. J. Phys. 8(1), 3–15 (1958).
    [Crossref]
  40. J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
    [Crossref]
  41. M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 12), 7414–7417 (2003).
    [Crossref]
  42. X. J. lv, L. N. Zhao, J. Lu, G. Zhao, H. Liu, Y. Q. Qin, and S. N. Zhu, “Poling quality evaluation of optical superlattice using 2D Fourier transform method,” Opt. Express 17(20), 18241–18249 (2009).
    [Crossref]
  43. D. Lee, V. Gopalan, and S. R. Phillpot, “Depinning of the ferroelectric domain wall in congruent LiNbO3,” Appl. Phys. Lett. 109(8), 082905 (2016).
    [Crossref]
  44. H. Steigerwald, “Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals,” Ph.D. Dissertation, University of Bonn (2011).
  45. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
    [Crossref]
  46. J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
    [Crossref]
  47. R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
    [Crossref]
  48. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
    [Crossref]
  49. A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
    [Crossref]
  50. S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
    [Crossref]
  51. Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
    [Crossref]
  52. J. Hirohashi, “Characterization of domain switching and optical damage properties in ferroelectrics,” Ph.D. Dissertation, Royal Institute of Technology (2006).
  53. V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
    [Crossref]
  54. A. Hochstrat, C. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures,” Phys. Rev. B 66(9), 092409 (2002).
    [Crossref]

2020 (2)

K.-H. Luo, V. Ansari, M. Massaro, M. Santandrea, C. Eigner, R. Ricken, H. Herrmann, and C. Silberhorn, “Counter-propagating photon pair generation in a nonlinear waveguide,” Opt. Express 28(3), 3215–3225 (2020).
[Crossref]

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

2019 (2)

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

J. T. Nagy and R. M. Reano, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films,” Opt. Mater. Express 9(7), 3146–3155 (2019).
[Crossref]

2018 (1)

R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
[Crossref]

2017 (2)

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

2016 (2)

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

D. Lee, V. Gopalan, and S. R. Phillpot, “Depinning of the ferroelectric domain wall in congruent LiNbO3,” Appl. Phys. Lett. 109(8), 082905 (2016).
[Crossref]

2015 (2)

Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

2014 (2)

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
[Crossref]

A. C. Busacca, S. Stivala, L. Curcio, A. Tomasino, and G. Assanto, “Backward frequency doubling of near infrared picosecond pulses,” Opt. Express 22(7), 7544–7549 (2014).
[Crossref]

2012 (1)

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

2011 (2)

2010 (2)

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

2009 (3)

2008 (1)

2007 (1)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

2006 (1)

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

2005 (2)

J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72(2), 023810 (2005).
[Crossref]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
[Crossref]

2004 (3)

J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
[Crossref]

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

2003 (4)

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 12), 7414–7417 (2003).
[Crossref]

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[Crossref]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[Crossref]

2002 (2)

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

A. Hochstrat, C. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures,” Phys. Rev. B 66(9), 092409 (2002).
[Crossref]

2001 (1)

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

2000 (1)

X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181(1-3), 153–159 (2000).
[Crossref]

1999 (3)

1998 (1)

1997 (3)

1996 (1)

1995 (1)

M. Matsumoto and K. Tanaka, “Quasi-phase-matched second-harmonic generation by backward propagating interaction,” IEEE J. Quantum Electron. 31(4), 700–705 (1995).
[Crossref]

1966 (1)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
[Crossref]

1962 (1)

H. F. Kay and J. W. Dunn, “Thickness dependence of the nucleation field of triglycine sulphate,” Philos. Mag. 7(84), 2027–2034 (1962).
[Crossref]

1958 (1)

V. Janovec, “On the theory of the coercive field of single-domain crystals of BaTiO3,” Czech. J. Phys. 8(1), 3–15 (1958).
[Crossref]

Agronin, A.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

Akhmatkhanov, A. R.

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

Albe, K.

Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
[Crossref]

Alikin, D. O.

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

Angelis, C. D.

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Ansari, V.

Apostolopoulos, V.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

Assanto, G.

Batchko, R. G.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

Baturin, I. S.

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

Bellanca, G.

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Binek, C.

A. Hochstrat, C. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures,” Phys. Rev. B 66(9), 092409 (2002).
[Crossref]

Bo, F.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Bowers, J. E.

Burns, W. K.

Buryak, A. V.

Busacca, A. C.

A. C. Busacca, S. Stivala, L. Curcio, A. Tomasino, and G. Assanto, “Backward frequency doubling of near infrared picosecond pulses,” Opt. Express 22(7), 7544–7549 (2014).
[Crossref]

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

Byer, R. L.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

Canalias, C.

R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
[Crossref]

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
[Crossref]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[Crossref]

Chang, J.-Y.

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 12), 7414–7417 (2003).
[Crossref]

Chang, L.

Chen, S. L.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Chen, X.

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B 96(4), 787–791 (2009).
[Crossref]

Chen, Y. H.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Chezganov, D. S.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

Christ, A.

Chuu, C.-S.

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A 83(6), 061803 (2011).
[Crossref]

Chuvakova, M. A.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

Clemens, R.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[Crossref]

Coetzee, R. S.

R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
[Crossref]

Conforti, M.

M. Conforti, C. de Angelis, U. K. Sapaev, and G. Assanto, “Pulse shaping via backward second harmonic generation,” Opt. Express 16(3), 2115–2121 (2008).
[Crossref]

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Curcio, L.

A. C. Busacca, S. Stivala, L. Curcio, A. Tomasino, and G. Assanto, “Backward frequency doubling of near infrared picosecond pulses,” Opt. Express 22(7), 7544–7549 (2014).
[Crossref]

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

D’Alessandro, G.

G. D’Alessandro, P. S. J. Russell, and A. A. Wheeler, “Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator,” Phys. Rev. A 55(4), 3211–3218 (1997).
[Crossref]

de Angelis, C.

de Angelis, M.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

De Nicola, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Deng, H. L.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Ding, Y. J.

Dolbilov, M. A.

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

Duan, J.-C.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Dunn, J. W.

H. F. Kay and J. W. Dunn, “Thickness dependence of the nucleation field of triglycine sulphate,” Philos. Mag. 7(84), 2027–2034 (1962).
[Crossref]

Eason, R. W.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

Eckstein, A.

Eigner, C.

Fejer, M. M.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

M. M. Fejer, “Nonlinear frequency conversion in periodically-poled ferroelectric waveguides,” in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch, eds. (Springer Netherlands, 1992), pp. 133–145.
[Crossref]

Ferraro, P.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Finizio, A.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Fokine, M.

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
[Crossref]

Furukawa, Y.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Gainutdinov, R.

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Gainutdinov, R. V.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Genenko, Y. A.

Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
[Crossref]

Gimadeeva, L. V.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

Glaum, J.

Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
[Crossref]

Gong, Y.-X.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Gopalan, V.

D. Lee, V. Gopalan, and S. R. Phillpot, “Depinning of the ferroelectric domain wall in congruent LiNbO3,” Appl. Phys. Lett. 109(8), 082905 (2016).
[Crossref]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Greshnyakov, E. D.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

Grilli, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Gu, X.

Guo, D.-J.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Harris, S. E.

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A 83(6), 061803 (2011).
[Crossref]

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
[Crossref]

Herrmann, H.

Hirohashi, J.

J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
[Crossref]

J. Hirohashi, “Characterization of domain switching and optical damage properties in ferroelectrics,” Ph.D. Dissertation, Royal Institute of Technology (2006).

Hochstrat, A.

A. Hochstrat, C. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures,” Phys. Rev. B 66(9), 092409 (2002).
[Crossref]

Hoffmann, M. J.

Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
[Crossref]

Hu, L.-J.

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 12), 7414–7417 (2003).
[Crossref]

Hu, M.-L.

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 12), 7414–7417 (2003).
[Crossref]

Janovec, V.

V. Janovec, “On the theory of the coercive field of single-domain crystals of BaTiO3,” Czech. J. Phys. 8(1), 3–15 (1958).
[Crossref]

Kamio, H.

J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
[Crossref]

Kang, J. U.

Kay, H. F.

H. F. Kay and J. W. Dunn, “Thickness dependence of the nucleation field of triglycine sulphate,” Philos. Mag. 7(84), 2027–2034 (1962).
[Crossref]

Khurgin, J. B.

Kim, S.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Kitamura, K.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Kleemann, W.

A. Hochstrat, C. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures,” Phys. Rev. B 66(9), 092409 (2002).
[Crossref]

Kolossovski, K. Y.

Kong, Y.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Kong, Y. F.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Korotkov, R. Y.

Landry, G. D.

Laurell, F.

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
[Crossref]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[Crossref]

Lauritano, M.

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Lee, D.

D. Lee, V. Gopalan, and S. R. Phillpot, “Depinning of the ferroelectric domain wall in congruent LiNbO3,” Appl. Phys. Lett. 109(8), 082905 (2016).
[Crossref]

Li, Y.

Liu, H.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

X. J. lv, L. N. Zhao, J. Lu, G. Zhao, H. Liu, Y. Q. Qin, and S. N. Zhu, “Poling quality evaluation of optical superlattice using 2D Fourier transform method,” Opt. Express 17(20), 18241–18249 (2009).
[Crossref]

Liu, Y.-C.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Locatelli, A.

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Lu, J.

Luo, K.-H.

lv, X. J.

Mailis, S.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

Maldonado, T. A.

Massaro, M.

Matsumoto, M.

M. Matsumoto and K. Tanaka, “Quasi-phase-matched second-harmonic generation by backward propagating interaction,” IEEE J. Quantum Electron. 31(4), 700–705 (1995).
[Crossref]

Melinger, J. S.

Mikhailovskii, V. Y.

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[Crossref]

Molotskii, M.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[Crossref]

Mosley, P. J.

Mu, X.

X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181(1-3), 153–159 (2000).
[Crossref]

Nagy, J. T.

J. T. Nagy and R. M. Reano, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films,” Opt. Mater. Express 9(7), 3146–3155 (2019).
[Crossref]

J. T. Nagy and R. M. Reano, “Fabricating periodically poled lithium niobate thin films with sub-micrometer fundamental period,” in Frontiers in Optics + Laser Science APS/DLS (Optical Society of America, 2019), p. JTu3A.10.
[Crossref]

Nebogatikov, M. S.

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

Oliveri, R. L.

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

Parini, A.

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Pashnina, E. A.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

Pasiskevicius, V.

R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
[Crossref]

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
[Crossref]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[Crossref]

Paturzo, M.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Peters, J.

Phillpot, S. R.

D. Lee, V. Gopalan, and S. R. Phillpot, “Depinning of the ferroelectric domain wall in congruent LiNbO3,” Appl. Phys. Lett. 109(8), 082905 (2016).
[Crossref]

Pierattini, G.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Qin, Y. Q.

Reano, R. M.

J. T. Nagy and R. M. Reano, “Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films,” Opt. Mater. Express 9(7), 3146–3155 (2019).
[Crossref]

J. T. Nagy and R. M. Reano, “Fabricating periodically poled lithium niobate thin films with sub-micrometer fundamental period,” in Frontiers in Optics + Laser Science APS/DLS (Optical Society of America, 2019), p. JTu3A.10.
[Crossref]

Ricken, R.

Risk, W. P.

X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181(1-3), 153–159 (2000).
[Crossref]

Riva-Sanseverino, S.

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

Rosenman, G.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

Rosenwaks, Y.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

Rupp, R.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Russell, P. S. J.

G. D’Alessandro, P. S. J. Russell, and A. A. Wheeler, “Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator,” Phys. Rev. A 55(4), 3211–3218 (1997).
[Crossref]

Sammut, R. A.

Santandrea, M.

Sapaev, U. K.

Shi, J.

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B 96(4), 787–791 (2009).
[Crossref]

Shichijyo, S.

J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
[Crossref]

Shur, V. Y.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

Silberhorn, C.

Solskii, I. M.

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
[Crossref]

Sones, C. L.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

Steigerwald, H.

H. Steigerwald, “Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals,” Ph.D. Dissertation, University of Bonn (2011).

Stivala, S.

A. C. Busacca, S. Stivala, L. Curcio, A. Tomasino, and G. Assanto, “Backward frequency doubling of near infrared picosecond pulses,” Opt. Express 22(7), 7544–7549 (2014).
[Crossref]

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

Strömqvist, G.

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

Sugak, D. Y.

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
[Crossref]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[Crossref]

Sun, C.-W.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Tanaka, K.

M. Matsumoto and K. Tanaka, “Quasi-phase-matched second-harmonic generation by backward propagating interaction,” IEEE J. Quantum Electron. 31(4), 700–705 (1995).
[Crossref]

Tomasino, A.

Trillo, S.

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

Urenski, P.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

Vlasov, E. O.

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

Volet, N.

Volk, T.

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Volk, T. R.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Wang, L.

Wang, W.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Wheeler, A. A.

G. D’Alessandro, P. S. J. Russell, and A. A. Wheeler, “Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator,” Phys. Rev. A 55(4), 3211–3218 (1997).
[Crossref]

Xu, J.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Xu, J. J.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Yamada, K.

J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
[Crossref]

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[Crossref]

Yan, B. X.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Yang, R.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Yao, J. H.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Yatsenko, A. V.

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
[Crossref]

Yevdokimov, S. V.

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
[Crossref]

Zhang, G.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Zhang, G. Y.

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Zhang, H.

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Zhang, H. H.

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

Zhao, G.

Zhao, L. N.

Zheng, D.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

Zhou, Z.

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B 96(4), 787–791 (2009).
[Crossref]

Zhu, S. N.

Zhu, S.-N.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Zotova, I. B.

X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181(1-3), 153–159 (2000).
[Crossref]

Zukauskas, A.

R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phase-matched devices in KTP and RKTP [Invited],” Opt. Mater. Express 1(7), 1319–1325 (2011).
[Crossref]

Adv. Mater. (1)

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32(3), 1806452 (2020).
[Crossref]

APL Photonics (1)

R. S. Coetzee, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP,” APL Photonics 3(7), 071302 (2018).
[Crossref]

Appl. Phys. B (1)

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B 96(4), 787–791 (2009).
[Crossref]

Appl. Phys. Lett. (11)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
[Crossref]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[Crossref]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling,” Appl. Phys. Lett. 81(26), 4946–4948 (2002).
[Crossref]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86(18), 181105 (2005).
[Crossref]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82(24), 4233–4235 (2003).
[Crossref]

R. V. Gainutdinov, T. R. Volk, and H. H. Zhang, “Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates,” Appl. Phys. Lett. 107(16), 162903 (2015).
[Crossref]

D. S. Chezganov, V. Y. Shur, E. O. Vlasov, L. V. Gimadeeva, D. O. Alikin, A. R. Akhmatkhanov, M. A. Chuvakova, and V. Y. Mikhailovskii, “Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals,” Appl. Phys. Lett. 110(8), 082903 (2017).
[Crossref]

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett. 82(1), 103–105 (2003).
[Crossref]

S. Stivala, A. C. Busacca, L. Curcio, R. L. Oliveri, S. Riva-Sanseverino, and G. Assanto, “Continuous-wave backward frequency doubling in periodically poled lithium niobate,” Appl. Phys. Lett. 96(11), 111110 (2010).
[Crossref]

D. Lee, V. Gopalan, and S. R. Phillpot, “Depinning of the ferroelectric domain wall in congruent LiNbO3,” Appl. Phys. Lett. 109(8), 082905 (2016).
[Crossref]

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett. 85(14), 2785–2787 (2004).
[Crossref]

Crystals (1)

T. Volk, R. Gainutdinov, and H. Zhang, “Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy,” Crystals 7(5), 137 (2017).
[Crossref]

Czech. J. Phys. (1)

V. Janovec, “On the theory of the coercive field of single-domain crystals of BaTiO3,” Czech. J. Phys. 8(1), 3–15 (1958).
[Crossref]

Ferroelectrics (1)

E. O. Vlasov, D. S. Chezganov, L. V. Gimadeeva, E. A. Pashnina, E. D. Greshnyakov, M. A. Chuvakova, and V. Y. Shur, “E-beam domain patterning in thin plates of MgO-doped LiNbO3,” Ferroelectrics 542(1), 85–92 (2019).
[Crossref]

Funct. Mater. (1)

A. V. Yatsenko, S. V. Yevdokimov, D. Y. Sugak, and I. M. Solskii, “Investigation of the defect complexes in highly Mg-doped LiNbO3 crystals by 93Nb NMR method,” Funct. Mater. 21(1), 31–35 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Matsumoto and K. Tanaka, “Quasi-phase-matched second-harmonic generation by backward propagating interaction,” IEEE J. Quantum Electron. 31(4), 700–705 (1995).
[Crossref]

J. Appl. Phys. (1)

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, and C. D. Angelis, “Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach,” J. Opt. A: Pure Appl. Opt. 8(7), S494–S501 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

J. Hirohashi, K. Yamada, H. Kamio, and S. Shichijyo, “Embryonic nucleation method for fabrication of uniform periodically poled structures in potassium niobate for wavelength conversion devices,” Jpn. J. Appl. Phys. 43(2), 559–566 (2004).
[Crossref]

M.-L. Hu, L.-J. Hu, and J.-Y. Chang, “Polarization switching of pure and MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 12), 7414–7417 (2003).
[Crossref]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-µm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[Crossref]

Mater. Sci. Eng., B (1)

Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging and fatigue in ferroelectrics,” Mater. Sci. Eng., B 192, 52–82 (2015).
[Crossref]

Nat. Photonics (1)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

Opt. Commun. (1)

X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181(1-3), 153–159 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (1)

V. Pasiskevicius, G. Strömqvist, F. Laurell, and C. Canalias, “Quasi-phase matched nonlinear media: Progress towards nonlinear optical engineering,” Opt. Mater. 34(3), 513–523 (2012).
[Crossref]

Opt. Mater. Express (2)

Optica (1)

Philos. Mag. (1)

H. F. Kay and J. W. Dunn, “Thickness dependence of the nucleation field of triglycine sulphate,” Philos. Mag. 7(84), 2027–2034 (1962).
[Crossref]

Phys. B (1)

J. H. Yao, Y. H. Chen, B. X. Yan, H. L. Deng, Y. F. Kong, S. L. Chen, J. J. Xu, and G. Y. Zhang, “Characteristics of domain inversion in magnesium-oxide-doped lithium niobate,” Phys. B 352(1-4), 294–298 (2004).
[Crossref]

Phys. Rev. A (3)

J. B. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A 72(2), 023810 (2005).
[Crossref]

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A 83(6), 061803 (2011).
[Crossref]

G. D’Alessandro, P. S. J. Russell, and A. A. Wheeler, “Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator,” Phys. Rev. A 55(4), 3211–3218 (1997).
[Crossref]

Phys. Rev. B (1)

A. Hochstrat, C. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures,” Phys. Rev. B 66(9), 092409 (2002).
[Crossref]

Phys. Solid State (1)

V. Y. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, and M. A. Dolbilov, “Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family,” Phys. Solid State 52(10), 2147–2153 (2010).
[Crossref]

Other (5)

J. T. Nagy and R. M. Reano, “Fabricating periodically poled lithium niobate thin films with sub-micrometer fundamental period,” in Frontiers in Optics + Laser Science APS/DLS (Optical Society of America, 2019), p. JTu3A.10.
[Crossref]

J. Hirohashi, “Characterization of domain switching and optical damage properties in ferroelectrics,” Ph.D. Dissertation, Royal Institute of Technology (2006).

H. Steigerwald, “Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals,” Ph.D. Dissertation, University of Bonn (2011).

M. M. Fejer, “Nonlinear frequency conversion in periodically-poled ferroelectric waveguides,” in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch, eds. (Springer Netherlands, 1992), pp. 133–145.
[Crossref]

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of poling electrodes on 700 nm thick x-cut MgO:LN thin film. A 100 nm thick SiO2 insulation layer is located under the Cr electrodes.
Fig. 2.
Fig. 2. Poling waveform and piezoresponse force microscope image of inverted domains on + x surface formed by a single pulse. The electrode has a 750 nm period Λ and 15 µm gap width G. Cr electrodes are visible at the top and bottom. The dark vertical bands are the inverted domains.
Fig. 3.
Fig. 3. Measured poling voltage and current showing the first and last preconditioning cycles, followed by a final poling pulse with voltage VP. The electrode has a 750 nm period Λ and 10 µm gap width G.
Fig. 4.
Fig. 4. Poling waveforms and PFM images of domains on + x surface formed by 10 ± 560 V preconditioning cycles followed by a final pulse with voltages VP. Only the final pulse is shown in the waveforms. Electrodes have a period Λ of 1500 nm and gap width G of 10 µm. (a)-(b) VP = 325 V, (c)-(d) VP = 280 V, (e)-(f) VP = 235 V, (g)-(h) VP = 190 V.
Fig. 5.
Fig. 5. (a) PFM image of inverted domains on + x surface across full electrode length L with 750 nm nominal period Λ. (b) Zoomed-in view of domains. Electrode tips at top and bottom of image are not fully resolved by AFM probe. (c) SEM image of electrode tip.
Fig. 6.
Fig. 6. Fourier spectrums computed from PFM data slice across entire 80 µm long electrode of a device poled with a single pulse and multiple preconditioning pulses. Inset: Zoomed-in view of fundamental component corresponding to a poling period of 747 nm.
Fig. 7.
Fig. 7. (a) Ferroelectric polarization hysteresis resulting from integration of poling currents during each preconditioning voltage cycle. (b) Coercive field in the forward (EF) and reverse (ER) poling directions and the internal field, equal to (EF - ER)/2. The data is an average of 26 devices and the error bars show the standard deviation. The hysteresis curves in (a) show that the charge (Q = P/A) in the forward and backward switching directions are nearly the same and remain constant over the 10 cycles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d ( z ) = d e f f m = G m exp ( i 2 π m Λ z ) ,