Abstract

The electron-beam physical vapor deposition (EBPVD) technique was selected for nickel oxide (NiOx) film deposition at room temperatures. NiOx film (18 nm thick) was deposited as a hole transporting material (HTM) for inverted perovskite solar cells (PSCs) onto a fluorine-doped tin oxide (FTO)-coated glass substrate at a chamber vacuum pressure of 4.6×104 Pa. PSCs were fabricated as a glass/FTO/NiOx(HTM)/CH3NH3PbI3/PC61BM/BCP/Ag structure with as-deposited and annealed (500 °C for 30 min) NiOx films. Under 100 mW cm-2 illumination, as-deposited and annealed NiOx as HTM in PSCs (0.16 cm2) showed a high-power conversion efficiency (PCE) of 13.20% and 13.24%, respectively. The as-deposited and annealed PSCs retained 72.2% and 76.96% of their initial efficiency in ambient conditions, correspondingly. This study highlights the possibility of achieving highly crystalline and finely disseminated NiOx films by EBPVD for fabricating efficient inverted PSCs.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
    [Crossref]
  2. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
    [Crossref]
  3. K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
    [Crossref]
  4. Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
    [Crossref]
  5. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
    [Crossref]
  6. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
    [Crossref]
  7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
    [Crossref]
  8. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
    [Crossref]
  9. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
    [Crossref]
  10. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
    [Crossref]
  11. NREL Photovoltaic Research, “Best Research-Cell Efficiency Chart” (available on 04/05/2020) https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf
  12. D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
    [Crossref]
  13. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
    [Crossref]
  14. X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
    [Crossref]
  15. J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
    [Crossref]
  16. T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
    [Crossref]
  17. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
    [Crossref]
  18. W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
    [Crossref]
  19. A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
    [Crossref]
  20. J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
    [Crossref]
  21. J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
    [Crossref]
  22. J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
    [Crossref]
  23. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
    [Crossref]
  24. B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
    [Crossref]
  25. Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
    [Crossref]
  26. M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
    [Crossref]
  27. X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
    [Crossref]
  28. J. A. Christians, R. C. Fung, and V. Prashant, “Kamat “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,”,” J. Am. Chem. Soc. 136(2), 758–764 (2014)..
    [Crossref]
  29. S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
    [Crossref]
  30. W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
    [Crossref]
  31. S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
    [Crossref]
  32. M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
    [Crossref]
  33. C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
    [Crossref]
  34. G. Boschloo and A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO,” J. Phys. Chem. B 105(15), 3039–3044 (2001).
    [Crossref]
  35. X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
    [Crossref]
  36. S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
    [Crossref]
  37. J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
    [Crossref]
  38. W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
    [Crossref]
  39. Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
    [Crossref]
  40. Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
    [Crossref]
  41. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
    [Crossref]
  42. J. W. Jung, C.-C. Chueh, and A. K.-Y. Jen, “A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells,” Adv. Mater. 27(47), 7874–7880 (2015).
    [Crossref]
  43. F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
    [Crossref]
  44. J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).
  45. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
    [Crossref]
  46. A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
    [Crossref]
  47. E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
    [Crossref]
  48. T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
    [Crossref]
  49. I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
    [Crossref]
  50. M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta 726, 93–101 (2012).
    [Crossref]
  51. B. D Cullity and S. R. Stock, Elements of X-Ray Diffraction, (Pearson Education, 2014).
  52. Y. M. Lu, W.-S. Hwang, and J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol. 155(2-3), 231–235 (2002).
    [Crossref]
  53. S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
    [Crossref]
  54. E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
    [Crossref]
  55. M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
    [Crossref]
  56. J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
    [Crossref]
  57. U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
    [Crossref]
  58. Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
    [Crossref]
  59. A. Jain and A. Kapoor, “A new method to determine the diode ideality factor of real solar cell using Lambert W-function,” Sol. Energy Mater. Sol. Cells 85(3), 391–396 (2005).
    [Crossref]
  60. K. Bouzidi, M. Chegaar, and A. Bouhemadou, “Solar cells parameters evaluation considering the series and shunt resistance,” Sol. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007).
    [Crossref]
  61. D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2(46), 19873–19881 (2014).
    [Crossref]

2019 (1)

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

2018 (6)

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

2017 (3)

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
[Crossref]

2016 (14)

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
[Crossref]

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

2015 (11)

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

J. W. Jung, C.-C. Chueh, and A. K.-Y. Jen, “A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells,” Adv. Mater. 27(47), 7874–7880 (2015).
[Crossref]

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

2014 (9)

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
[Crossref]

D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2(46), 19873–19881 (2014).
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

J. A. Christians, R. C. Fung, and V. Prashant, “Kamat “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,”,” J. Am. Chem. Soc. 136(2), 758–764 (2014)..
[Crossref]

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

2013 (6)

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

2012 (3)

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref]

M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta 726, 93–101 (2012).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
[Crossref]

2007 (1)

K. Bouzidi, M. Chegaar, and A. Bouhemadou, “Solar cells parameters evaluation considering the series and shunt resistance,” Sol. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007).
[Crossref]

2005 (1)

A. Jain and A. Kapoor, “A new method to determine the diode ideality factor of real solar cell using Lambert W-function,” Sol. Energy Mater. Sol. Cells 85(3), 391–396 (2005).
[Crossref]

2002 (1)

Y. M. Lu, W.-S. Hwang, and J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol. 155(2-3), 231–235 (2002).
[Crossref]

2001 (1)

G. Boschloo and A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO,” J. Phys. Chem. B 105(15), 3039–3044 (2001).
[Crossref]

Abate, A.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

Abzieher, T.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Adam, G.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Ahn, T. K.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

Ajayan, P. M.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Akhtaruzzaman, M.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Alcocer, M. J.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Alzahrani, A.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Apaydin, D. H.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Arpita Sarkar, M.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Ashraful, I.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Aydin, E.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Azmi, R.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Bae, C.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Baeten, L.

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

Bai, Y.

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Ball, J. M.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Bao, S. H.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Baran, D.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Bauer, S.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Bein, T.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Bi, D.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

Bi, E.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Bian, Z.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Bijleveld, J. C.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Blancon, J.-C.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Boix, P. P.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Boschloo, G.

G. Boschloo and A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO,” J. Phys. Chem. B 105(15), 3039–3044 (2001).
[Crossref]

Bouhemadou, A.

K. Bouzidi, M. Chegaar, and A. Bouhemadou, “Solar cells parameters evaluation considering the series and shunt resistance,” Sol. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007).
[Crossref]

Bouzidi, K.

K. Bouzidi, M. Chegaar, and A. Bouhemadou, “Solar cells parameters evaluation considering the series and shunt resistance,” Sol. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007).
[Crossref]

Boyen, H.-G.

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

Bruno, A.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Buin, A.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

Burschka, Julian

Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
[Crossref]

Chai, S. U.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Chang, J. A.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Chang, W.-H.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Chegaar, M.

K. Bouzidi, M. Chegaar, and A. Bouhemadou, “Solar cells parameters evaluation considering the series and shunt resistance,” Sol. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007).
[Crossref]

Chen, H.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Chen, K.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Chen, P.

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Chen, Q.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

Chen, W.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Chen, Z.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

Cheng, J.

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

Cheng, S. Z.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Cheng, Y.-B.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

Cho, N.

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Choi, Y. C.

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

Chowdhury, T. H.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Choy, Wallace C. H.

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

Christians, J. A.

J. A. Christians, R. C. Fung, and V. Prashant, “Kamat “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,”,” J. Am. Chem. Soc. 136(2), 758–764 (2014)..
[Crossref]

Chueh, C.-C.

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

J. W. Jung, C.-C. Chueh, and A. K.-Y. Jen, “A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells,” Adv. Mater. 27(47), 7874–7880 (2015).
[Crossref]

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Closs, A. C.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Comin, R.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Conings, B.

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

Correa-Baena, J.-P.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

Crochet, J.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Cullity, B. D

B. D Cullity and S. R. Stock, Elements of X-Ray Diffraction, (Pearson Education, 2014).

D’Haen, J.

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

Dai, X.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

De Bastiani, M.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

De Dobbelaere, C.

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

De Marco, N.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

De Wolf, S.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Décoppet, J.-D.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

Dewi, H. A.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Dingemans, T. J.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Docampo, P.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Domanski, K.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

Drack, M.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Du, P.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Durand, O.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Eggers, H.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Eperon, G. E.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Even, J.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Ezzaouia, H.

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
[Crossref]

Fabregat-Santiago, F.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Farooq, A.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Feng, Y.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

Fung, R. C.

J. A. Christians, R. C. Fung, and V. Prashant, “Kamat “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,”,” J. Am. Chem. Soc. 136(2), 758–764 (2014)..
[Crossref]

Gangishetty, M. K.

D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2(46), 19873–19881 (2014).
[Crossref]

Gao, B.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

Ginger, D. S.

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Glaz, M. S.

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Glowacki, E. D.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Gong, Q.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Gong, X.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Grätzel, M.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
[Crossref]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Green, M.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

Grimsdale, A. C.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Groiss, H.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Guo, T.-F.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

Guo, Y.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

Gupta, V.

M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta 726, 93–101 (2012).
[Crossref]

Gurzadyan, G. G.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Ha, N. Y.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Habicht, K.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Hagfeldt, A.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

G. Boschloo and A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO,” J. Phys. Chem. B 105(15), 3039–3044 (2001).
[Crossref]

Hajji, M.

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
[Crossref]

Han, L.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Heo, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Herz, L. M.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Hetterich, M.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Hill, I. G.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Ho-Baillie, A.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

Hong, Z.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Hu, Q.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Huang, A. B.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Huang, C.

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Huang, F.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

Huang, S.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

Huanga, C.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Hutter, E. M.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Hwang, C. S.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

Hwang, W.-S.

Y. M. Lu, W.-S. Hwang, and J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol. 155(2-3), 231–235 (2002).
[Crossref]

Im, J.-H.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Im, S. H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

Ip, A. H.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Ishikawa, Y.

I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
[Crossref]

Islam, A.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Ito, S.

I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
[Crossref]

Jaegermann, W.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Jain, A.

A. Jain and A. Kapoor, “A new method to determine the diode ideality factor of real solar cell using Lambert W-function,” Sol. Energy Mater. Sol. Cells 85(3), 391–396 (2005).
[Crossref]

Jen, A. K.-Y.

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

J. W. Jung, C.-C. Chueh, and A. K.-Y. Jen, “A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells,” Adv. Mater. 27(47), 7874–7880 (2015).
[Crossref]

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Jeon, N. J.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

Jeon, S.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Jiang, C.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Jiang, F.

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

Jiao, D.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Jin, P.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Jlassi, M.

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
[Crossref]

Jo, S. B.

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Juarez-Perez, E. J.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Jung, H. S.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Jung, J. W.

J. W. Jung, C.-C. Chueh, and A. K.-Y. Jen, “A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells,” Adv. Mater. 27(47), 7874–7880 (2015).
[Crossref]

Jung, M. S.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Kaltenbrunner, M.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Kanatzidis, M. G.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Kanjanaboos, P.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Kapoor, A.

A. Jain and A. Kapoor, “A new method to determine the diode ideality factor of real solar cell using Lambert W-function,” Sol. Energy Mater. Sol. Cells 85(3), 391–396 (2005).
[Crossref]

Katan, C.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Kayesh, E.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Kelly, T. L.

D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2(46), 19873–19881 (2014).
[Crossref]

Kepenekian, M.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Kessler, Florian

Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
[Crossref]

Kim, B.-G.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Kim, D. H.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Kim, H.-J.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Kim, H.-S.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Kim, J. H.

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Kim, J. Y.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Kim, J.-H.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Kim, M.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Kim, S.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Kim, S.-J.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Kim, W.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Kim, Y. C.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

Klohr, L.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Ko, S. H.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Kojda, D.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
[Crossref]

Krishna, A.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Kwon, U.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Lakus-Wollny, K.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Lan, X.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Lan, Z.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Laquai, F.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Lee, C.-R.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Lee, D.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Lee, J.-J.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Lee, K.-B.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Lee, S.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Lee, Y. H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Lei, L.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Lemmer, U.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Leonat, L.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Li, G.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Li, H.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Li, J.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Li, W.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Li, X.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

Li, Y.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Liang, P.-W.

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Lim, C.-S.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Liu, B.

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Liu, C.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Liu, D.

D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2(46), 19873–19881 (2014).
[Crossref]

Liu, F.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Liu, J.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Liu, R.

Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
[Crossref]

Liu, T.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Liu, X.

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

Liu, Y.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Liu, Z.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Long, X.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Lu, Y. M.

Y. M. Lu, W.-S. Hwang, and J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol. 155(2-3), 231–235 (2002).
[Crossref]

Luo, D.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Luo, J.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

Luo, Q.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Luo, S.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Maksymovych, P.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Manca, J.

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

Mandal, T. N.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

Mankel, E.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Marchioro, A.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Matsui, T.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

Mayer, T.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

McDowell, J. J.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Meng, L.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Meng, T.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Mertens, A.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Mhaisalkar, S. G.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
[Crossref]

Moehl, T.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Moghadamzadeh, S.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Mohite, A. D.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Moon, S.-J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Mora-Sero, I.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Moser, J. E.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Murase, S.

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref]

Nam, J. K.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Nazeeruddin, K.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Nazeeruddin, M. K.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

Nazeeruddin, Mohammad K.

Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
[Crossref]

Neophytou, M.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Nguyen, D. C.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Nie, W.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Ning, Z.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Niu, C.

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Noh, J. H.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

Paetzold, U. W.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Park, H. J.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Park, I. J.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Park, J. H.

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

Park, J.-H.

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Park, N.-G.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Park, S.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

Pellet, N.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

Peng, H.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Petrozza, A.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Petrus, M. L.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Powalla, M.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Prashant, V.

J. A. Christians, R. C. Fung, and V. Prashant, “Kamat “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,”,” J. Am. Chem. Soc. 136(2), 758–764 (2014)..
[Crossref]

Quan, L. N.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Que, M.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Que, W.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Quli, F.

J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).

Raifuku, I.

I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
[Crossref]

Rajagopal, A.

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Rao, H.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

Richards, B. S.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Russell, T. P.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Ryu, S.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Ryuji Kaneko, M.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Sabba, D.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Sajjad, M.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Saliba, M.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

Sargent, E. H.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Sariciftci, N. S.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Savenije, T. J.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Schackmar, F.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Scharber, M. C.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Schmager, R.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Schutt, K.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Schwenzer, J. A.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Schwingenschlögl, U.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Schwödiauer, R.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Seo, J.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Seo, J.-Y.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

Seo, S.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Seok, S. I.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Shao, J.

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Shin, H.

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

Shin, H.-W.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

Shin, S. S.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
[Crossref]

Singh, J.

J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).

J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).

Sirtl, M. T.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Snaith, H.

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Snaith, H. J.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Soci, C.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Song, T.-B.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Sopian, K. B.

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Sta, I.

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
[Crossref]

Stock, S. R.

B. D Cullity and S. R. Stock, Elements of X-Ray Diffraction, (Pearson Education, 2014).

Stoumpos, C. C.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Stranks, S. D.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Sun, J.-P.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Sun, W.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Sutterlüti, F.

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

Tang, J.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
[Crossref]

Thomas Schriempf, J.

J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).

Tomar, M.

M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta 726, 93–101 (2012).
[Crossref]

Traore, B.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Tress, W.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

Tress, W. R.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

Tretiak, S.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Troughton, J.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Tsai, H.

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

Tyagi, M.

M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta 726, 93–101 (2012).
[Crossref]

Ugur, E.

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

Ummadisingu, A.

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

Uraoka, Y.

I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
[Crossref]

Voznyy, O.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Wang, J.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Wang, K.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Wang, N.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Wang, S.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

Wang, Z.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Wei, Z.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Wen, X.

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

White, M. S.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Williams, S. T.

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

Wolfe, D. E.

J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).

Wu, J.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Wu, Y.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Wußler, M.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Xia, Y.

Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
[Crossref]

Xiao, L.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

Xing, Y.

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Xu, J.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Xu, X.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Yan, F.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Yan, W.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Yang, G.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Yang, J. S.

Y. M. Lu, W.-S. Hwang, and J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol. 155(2-3), 231–235 (2002).
[Crossref]

Yang, M.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

Yang, S.

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Yang, S. W.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Yang, W. S.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Yang, X.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Yang, Y.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref]

Yang, Z.

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Yao, C.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Yao, Z.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Ye, S.

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Yi, C.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

Yin, J.

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Yin, X.

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Yoon, S. C.

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

You, J.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Yu, X.

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

Yu, Y.

Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
[Crossref]

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Yuan, M.

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Yue, Y.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Yum, J.-H.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

Zakeeruddin, S. M.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

Zeng, W.

Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
[Crossref]

Zhang, D.

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

Zhang, F.

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

Zhang, L.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Zhang, T.

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Zhang, W.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

Zhang, X.

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Zhang, Y.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Zhao, L.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Zhao, T.

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Zheng, J. Y.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Zhou, H.

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Zhou, Y.

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

Zhu, J. T.

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

Zhu, R.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Zhu, Z.

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

ACS Appl. Energy Mater. (1)

E. Aydin, J. Troughton, M. De Bastiani, E. Ugur, M. Sajjad, A. Alzahrani, M. Neophytou, U. Schwingenschlögl, F. Laquai, D. Baran, and S. De Wolf, “Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells,” ACS Appl. Energy Mater. 1(11), 6227–6233 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (2)

X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Li, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS Appl. Mater. Interfaces 9(3), 2439–2448 (2017)..
[Crossref]

C. Liu, K. Wang, P. Du, T. Meng, X. Yu, S. Z. Cheng, and X. Gong, “High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer,” ACS Appl. Mater. Interfaces 7(2), 1153–1159 (2015).
[Crossref]

ACS Nano (1)

X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, and J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts,” ACS Nano 10(3), 3630–3636 (2016).
[Crossref]

Adv. Energy Mater. (2)

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, “Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics,” Adv. Energy Mater. 9(12), 1802995 (2019).
[Crossref]

M. L. Petrus, K. Schutt, M. T. Sirtl, E. M. Hutter, A. C. Closs, J. M. Ball, J. C. Bijleveld, A. Petrozza, T. Bein, T. J. Dingemans, T. J. Savenije, H. Snaith, and P. Docampo, “New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones,” Adv. Energy Mater. 8(32), 1801605 (2018)..
[Crossref]

Adv. Mater. (10)

Z. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K.-Y. Jen, “Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer,” Adv. Mater. 28(30), 6478–6484 (2016).
[Crossref]

J. W. Jung, C.-C. Chueh, and A. K.-Y. Jen, “A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells,” Adv. Mater. 27(47), 7874–7880 (2015).
[Crossref]

F. Jiang, Wallace C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref]

J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, D. S. Ginger, and A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer,” Adv. Mater. 27(4), 695–701 (2015).
[Crossref]

J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition,” Adv. Mater. 27(27), 4013–4019 (2015).
[Crossref]

W. Nie, H. Tsai, J.-C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. G. Kanatzidis, J. Even, and A. D. Mohite, “Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide,” Adv. Mater. 30(5), 1703879 (2018).
[Crossref]

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref]

B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H.-G. Boyen, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26(13), 2041–2046 (2014)..
[Crossref]

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, and Q. Gong, “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Adv. Mater. 28(48), 10718–10724 (2016)..
[Crossref]

Z. Yang, A. Rajagopal, C.-C. Chueh, S. B. Jo, B. Liu, T. Zhao, and A. K.-Y. Jen, “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater. 28(40), 8990–8997 (2016)..
[Crossref]

Anal. Chim. Acta (1)

M. Tyagi, M. Tomar, and V. Gupta, “Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor,” Anal. Chim. Acta 726, 93–101 (2012).
[Crossref]

Angew. Chem. (1)

Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells,” Angew. Chem. 126(46), 12779–12783 (2014).
[Crossref]

Appl. Phys. Lett. (1)

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014)..
[Crossref]

Chem. - Eur. J. (1)

A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, G. Yang, H. A. Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar, and A. C. Grimsdale, “Facile Synthesis of a Furan–Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells,” Chem. - Eur. J. 21(43), 15113–15117 (2015).
[Crossref]

Chem. Mater. (1)

Julian Burschka, Florian Kessler, Mohammad K. Nazeeruddin, and M. Grätzel, “Co (III) complexes as p-dopants in solid-state dye-sensitized solar cells,” Chem. Mater. 25(15), 2986–2990 (2013).
[Crossref]

Electrochim. Acta (1)

Y. Guo, X. Yin, J. Liu, Y. Yang, W. Chen, M. Que, W. Que, and B. Gao, “Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application,” Electrochim. Acta 282, 81–88 (2018).
[Crossref]

Energy Environ. Sci. (2)

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9(6), 1989–1997 (2016)..
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009)..
[Crossref]

J. A. Christians, R. C. Fung, and V. Prashant, “Kamat “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,”,” J. Am. Chem. Soc. 136(2), 758–764 (2014)..
[Crossref]

J. Mater. Chem. A (2)

J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Nanostructured TiO2/CH3 NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” J. Mater. Chem. A 1(38), 11842–11847 (2013)..
[Crossref]

D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2(46), 19873–19881 (2014).
[Crossref]

J. Mater. Chem. C (2)

A. B. Huang, J. T. Zhu, J. Y. Zheng, Y. Yu, Y. Liu, S. W. Yang, S. H. Bao, L. Lei, and P. Jin, “Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility,” J. Mater. Chem. C 4(46), 10839–10846 (2016).
[Crossref]

X. Wen, Y. Feng, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, “Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites,” J. Mater. Chem. C 4(4), 793–800 (2016)..
[Crossref]

J. Phys. Chem. B (1)

G. Boschloo and A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO,” J. Phys. Chem. B 105(15), 3039–3044 (2001).
[Crossref]

J. Phys. Chem. C (1)

I. Raifuku, Y. Ishikawa, S. Ito, and Y. Uraoka, “Characteristics of perovskite solar cells under low-illuminance conditions,” J. Phys. Chem. C 120(34), 18986–18990 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref]

Mater. Lett. (2)

Y. Yu, Y. Xia, W. Zeng, and R. Liu, “Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance,” Mater. Lett. 206, 80–83 (2017).
[Crossref]

T. H. Chowdhury, M. Ryuji Kaneko, E. Kayesh, M. Akhtaruzzaman, K. B. Sopian, J.-J. Lee, and A. Islam, “Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells,” Mater. Lett. 223, 109–111 (2018)..
[Crossref]

Mater. Sci. Semicond. Process. (1)

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, “Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating,” Mater. Sci. Semicond. Process. 21, 7–13 (2014).
[Crossref]

Nano Lett. (2)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013)..
[Crossref]

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 15(6), 3723–3728 (2015)..
[Crossref]

Nanoscale (3)

W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huanga, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8(20), 10806–10813 (2016).
[Crossref]

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, and H. Shin, “An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells,” Nanoscale 8(22), 11403–11412 (2016).
[Crossref]

W. Kim, S. Kim, S. U. Chai, M. S. Jung, J. K. Nam, J.-H. Kim, and J. H. Park, “Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells,” Nanoscale 9(34), 12677–12683 (2017)..
[Crossref]

Nat. Commun. (1)

J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, “Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis in Planar Diodes,” Nat. Commun. 6(1), 7081 (2015).
[Crossref]

Nat. Energy (1)

D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1(10), 16142 (2016).
[Crossref]

Nat. Mater. (2)

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014)..
[Crossref]

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Nat. Nanotechnol. (1)

J. You, L. Meng, T.-B. Song, T.-F. Guo, M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotechnol. 11(1), 75–81 (2016)..
[Crossref]

Nat. Photonics (1)

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, M. Arpita Sarkar, K. Nazeeruddin, M. Grätzel, and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013)..
[Crossref]

Nature (2)

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013)..
[Crossref]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015)..
[Crossref]

Sci. Rep. (2)

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(1), 591 (2012)..
[Crossref]

U. Kwon, B.-G. Kim, D. C. Nguyen, J.-H. Park, N. Y. Ha, S.-J. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park, “Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells,” Sci. Rep. 6(1), 30759 (2016).
[Crossref]

Science (3)

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref]

M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “"Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354(6309), 206–209 (2016)..
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013)..
[Crossref]

Sol. Energy (1)

J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu, and Z. Lan, “High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals,” Sol. Energy 161, 100–108 (2018)..
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

A. Jain and A. Kapoor, “A new method to determine the diode ideality factor of real solar cell using Lambert W-function,” Sol. Energy Mater. Sol. Cells 85(3), 391–396 (2005).
[Crossref]

K. Bouzidi, M. Chegaar, and A. Bouhemadou, “Solar cells parameters evaluation considering the series and shunt resistance,” Sol. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007).
[Crossref]

Surf. Coat. Technol. (1)

Y. M. Lu, W.-S. Hwang, and J. S. Yang, “Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films,” Surf. Coat. Technol. 155(2-3), 231–235 (2002).
[Crossref]

Other (3)

B. D Cullity and S. R. Stock, Elements of X-Ray Diffraction, (Pearson Education, 2014).

J. Singh, F. Quli, D. E. Wolfe, J. Thomas Schriempf, and J. Singh, “An overview: Electron beam-physical vapor deposition technology-Present and future applications,” Applied Research Laboratory, Pennsylvania State University, USA (1999).

NREL Photovoltaic Research, “Best Research-Cell Efficiency Chart” (available on 04/05/2020) https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. XRD data for as-deposited and annealed NiOx film on glass substrate.
Fig. 2.
Fig. 2. SEM images of (a) as-deposited; FESEM images of (b) as-deposited, (c) annealed NiOx film on bare glass and (d) bare FTO; inset NiOx-coated FTO glass.
Fig. 3.
Fig. 3. Topographic images by AFM of (a) bare FTO, (b) as-deposited FTO/NiOx film, and (c) annealed FTO/NiOx film; inset shows the 3D images.
Fig. 4.
Fig. 4. Transmittance of bare FTO and annealed FTO/NiOx
Fig. 5.
Fig. 5. Workfunction determination of (a) as-deposited and (b) annealed NiOx film by PYS.
Fig. 6.
Fig. 6. (a) Fabricated p-i-n PSC and (b) corresponding band diagram.
Fig. 7.
Fig. 7. (a) J-V curves measured at solar simulator under simulated AM 1.5 G in this experiment at day 1 and 28th of fabrication; (b) EQE of the inverted planar PSCs fabricated with NiOx HTLs for both as-deposited and annealed NiOx film.
Fig. 8.
Fig. 8. (a) X-ray diffraction peaks of CH3NH3PbI3; (b) UV-Vis spectra of FTO and PSC on as-deposited and annealed NiOx; (c) SEM topography of CH3NH3PbI3, and (d) cross-sectional FESEM image of the fabricated PSC.
Fig. 9.
Fig. 9. Working principal of EBPVD Technique.
Fig. 10.
Fig. 10. EDX spectrum of FTO/NiOx films. Inset shows the weight% and atomic% of elements of as-deposited NiOx film.
Fig. 11.
Fig. 11. Transmittance of EBPVD NiOx films on glass substrate. A clear decrease of transmission is observed in the higher energy shorter-wavelength when NiOx film thickness is increased and continue to exhibit lower transmission in the visible region of spectrum as well.

Tables (3)

Tables Icon

Table 1. Summery of electrical properties of NiOx films

Tables Icon

Table 2. Summary of fabricated PSC devices’ performance with NiOx HTM at the 1st and 28th days of fabrication

Tables Icon

Table 3. Summary of the highest and average values of photovoltaic performances of PSC devices.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Dp = K λ / β cos θ

Metrics