Abstract

Three-dimensional microstructures with selective properties have often been developed for optical and photonic applications. The simplest way to achieve optically active structures is by the functionalization of host matrices using, for instance, organic dyes. Laser fabrication techniques, such as two-photon polymerization, allow manufacturing devices quickly, with high resolution, without shape limitation, among other many advantages. In this work, we demonstrate the fabrication of three-dimensional microstructures via two-photon polymerization, using azobenzene-based dyes as photoinitiator, the compound responsible for absorbing the light and start the polymerization. When a high photoinitiator concentration is used (for instance 1.00 wt%), a significant amount of dye remains unchanged into the final structures, and its optically induced birefringence could be investigated. Therefore, the azobenzene-based dye acts, at the same time, as the photoinitiator and functionalizer.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
    [Crossref]
  2. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref]
  3. K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
    [Crossref]
  4. V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
    [Crossref]
  5. S. Benkhaya, S. M’Rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon 6(1), e03271 (2020).
    [Crossref]
  6. B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
    [Crossref]
  7. E. Mavrona, S. Mailis, N. Podoliak, G. D’Alessandro, N. Tabiryan, M. Trapatseli, J. F. Blach, M. Kaczmarek, and V. Apostolopoulos, “Intrinsic and photo-induced properties of high refractive index azobenzene based thin films Invited,” Opt. Mater. Express 8(2), 420–430 (2018).
    [Crossref]
  8. S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
    [Crossref]
  9. T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
    [Crossref]
  10. Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
    [Crossref]
  11. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17(12), 1992–2000 (2000).
    [Crossref]
  12. S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, “Stable polymeric materials for nonlinear optics: a review based on azobenzene systems,” Prog. Polym. Sci. 29(1), 45–74 (2004).
    [Crossref]
  13. V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
    [Crossref]
  14. C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
    [Crossref]
  15. V. Tribuzi, R. D. Fonseca, D. S. Correa, and C. R. Mendonca, “Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer,” Opt. Mater. Express 3(1), 21–26 (2013).
    [Crossref]
  16. N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991), p. 628.
  17. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
    [Crossref]
  18. J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
    [Crossref]
  19. J. D. Leeds, J. T. Fourkas, and Y. Wang, “Achieving Ultrahigh Concentrations of Fluorescent Single-Walled Carbon Nanotubes Using Small-Molecule Viscosity Modifiers,” Small 9(2), 241–247 (2013).
    [Crossref]
  20. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  21. N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
    [Crossref]
  22. J. O. Morley, O. J. Guy, and M. H. Charlton, “Mechanistic studies on the photodegradation of azoarenes,” J. Photochem. Photobiol., A 173(2), 174–184 (2005).
    [Crossref]

2020 (1)

S. Benkhaya, S. M’Rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon 6(1), e03271 (2020).
[Crossref]

2019 (3)

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

2018 (2)

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

E. Mavrona, S. Mailis, N. Podoliak, G. D’Alessandro, N. Tabiryan, M. Trapatseli, J. F. Blach, M. Kaczmarek, and V. Apostolopoulos, “Intrinsic and photo-induced properties of high refractive index azobenzene based thin films Invited,” Opt. Mater. Express 8(2), 420–430 (2018).
[Crossref]

2017 (1)

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

2013 (2)

J. D. Leeds, J. T. Fourkas, and Y. Wang, “Achieving Ultrahigh Concentrations of Fluorescent Single-Walled Carbon Nanotubes Using Small-Molecule Viscosity Modifiers,” Small 9(2), 241–247 (2013).
[Crossref]

V. Tribuzi, R. D. Fonseca, D. S. Correa, and C. R. Mendonca, “Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer,” Opt. Mater. Express 3(1), 21–26 (2013).
[Crossref]

2010 (1)

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

2008 (1)

K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

2007 (1)

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
[Crossref]

2005 (2)

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

J. O. Morley, O. J. Guy, and M. H. Charlton, “Mechanistic studies on the photodegradation of azoarenes,” J. Photochem. Photobiol., A 173(2), 174–184 (2005).
[Crossref]

2004 (2)

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, “Stable polymeric materials for nonlinear optics: a review based on azobenzene systems,” Prog. Polym. Sci. 29(1), 45–74 (2004).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

2000 (2)

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17(12), 1992–2000 (2000).
[Crossref]

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

1998 (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[Crossref]

1997 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Allonas, X.

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

Almeida, G. F. B.

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

Andrade, T.

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

Andres, M. V.

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

Apostolopoulos, V.

Baldacchini, T.

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Barrett, C. J.

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

Benkhaya, S.

S. Benkhaya, S. M’Rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon 6(1), e03271 (2020).
[Crossref]

Blach, J. F.

Canva, M.

Chan, K. P.

Chang, V. Y.

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

Charlton, M. H.

J. O. Morley, O. J. Guy, and M. H. Charlton, “Mechanistic studies on the photodegradation of azoarenes,” J. Photochem. Photobiol., A 173(2), 174–184 (2005).
[Crossref]

Chomicki, D.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Correa, D. S.

D’Alessandro, G.

Del Nero, J.

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

Derkowska-Zielinska, B.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

El Harfi, A.

S. Benkhaya, S. M’Rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon 6(1), e03271 (2020).
[Crossref]

Elhani, S.

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

Farrer, R. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Fedele, C.

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

Fonseca, R. D.

Fouassier, J. P.

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

Fourkas, J. T.

J. D. Leeds, J. T. Fourkas, and Y. Wang, “Achieving Ultrahigh Concentrations of Fluorescent Single-Walled Carbon Nanotubes Using Small-Molecule Viscosity Modifiers,” Small 9(2), 241–247 (2013).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Fukuda, T.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Galvan-Gonzalez, A.

Gester, R.

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

Guy, O. J.

J. O. Morley, O. J. Guy, and M. H. Charlton, “Mechanistic studies on the photodegradation of azoarenes,” J. Photochem. Photobiol., A 173(2), 174–184 (2005).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Halim, M.

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

Hayashi, S.

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

Hoshiyama, S.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Kaczmarek, M.

Kaneko, F.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Kato, K.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Kato, M.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Kawakami, T.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Kawata, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref]

Kharchenko, O.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Kim, R. H.

K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Kimura, T.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Kowalczyk, T. C.

Krupka, O.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Kumar, J.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Lackritz, H. S.

LaFratta, C. N.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Lalevee, J.

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

Lee, K. S.

K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Leeds, J. D.

J. D. Leeds, J. T. Fourkas, and Y. Wang, “Achieving Ultrahigh Concentrations of Fluorescent Single-Walled Carbon Nanotubes Using Small-Molecule Viscosity Modifiers,” Small 9(2), 241–247 (2013).
[Crossref]

Ley, C.

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

M’Rabet, S.

S. Benkhaya, S. M’Rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon 6(1), e03271 (2020).
[Crossref]

Mailis, S.

Manzoni, V.

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

Maouli, I.

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

Maruo, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref]

Matsuda, H.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Mavrona, E.

Mazur, E.

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
[Crossref]

Mendonca, C. R.

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

V. Tribuzi, R. D. Fonseca, D. S. Correa, and C. R. Mendonca, “Birefringent microstructures fabricated by two-photon polymerization containing an azopolymer,” Opt. Mater. Express 3(1), 21–26 (2013).
[Crossref]

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
[Crossref]

Modesto-Costa, L.

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

Morlet-Savary, F.

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

Morley, J. O.

J. O. Morley, O. J. Guy, and M. H. Charlton, “Mechanistic studies on the photodegradation of azoarenes,” J. Photochem. Photobiol., A 173(2), 174–184 (2005).
[Crossref]

Nakamura, O.

Naparty, M.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Naughton, M. J.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Ohdaira, Y.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Otuka, A. J. G.

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

Park, S. H.

K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Pillai, C. K. S.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, “Stable polymeric materials for nonlinear optics: a review based on azobenzene systems,” Prog. Polym. Sci. 29(1), 45–74 (2004).
[Crossref]

Podoliak, N.

Priimagi, A.

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

Refki, S.

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

Rosello-Mecho, X.

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Saleh, B. E. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Sekkat, Z.

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shinbo, K.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Shiraga, T.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Shishido, A.

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

Skowronski, L.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Smokal, V.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Stegeman, G. I.

Sukhomlinova, L.

Sypniewska, M.

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

Tabiryan, N.

Tayalia, P.

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
[Crossref]

Teich, M. C.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Tomazio, N. B.

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

Trapatseli, M.

Tribuzi, V.

Tripathy, S. K.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Tsutsumi, N.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, “Stable polymeric materials for nonlinear optics: a review based on azobenzene systems,” Prog. Polym. Sci. 29(1), 45–74 (2004).
[Crossref]

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991), p. 628.

Twieg, R. J.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Viswanathan, N. K.

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Wang, Y.

J. D. Leeds, J. T. Fourkas, and Y. Wang, “Achieving Ultrahigh Concentrations of Fluorescent Single-Walled Carbon Nanotubes Using Small-Molecule Viscosity Modifiers,” Small 9(2), 241–247 (2013).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Yang, D. Y.

K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Yesodha, S. K.

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, “Stable polymeric materials for nonlinear optics: a review based on azobenzene systems,” Prog. Polym. Sci. 29(1), 45–74 (2004).
[Crossref]

Adv. Opt. Mater. (1)

V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Adv. Opt. Mater. 7(16), 1900091 (2019).
[Crossref]

Appl. Phys. Lett. (1)

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[Crossref]

Heliyon (1)

S. Benkhaya, S. M’Rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon 6(1), e03271 (2020).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Phys. (2)

C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur, “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization,” J. Appl. Phys. 102(1), 013109 (2007).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

J. Microelectromech. Syst. (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411–415 (1998).
[Crossref]

J. Opt. (1)

S. Elhani, I. Maouli, S. Refki, M. Halim, S. Hayashi, and Z. Sekkat, “Quantitative analyses of optically induced birefringence in azo dye containing polymers,” J. Opt. 21(11), 115401 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol., A (1)

J. O. Morley, O. J. Guy, and M. H. Charlton, “Mechanistic studies on the photodegradation of azoarenes,” J. Photochem. Photobiol., A 173(2), 174–184 (2005).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

N. B. Tomazio, A. J. G. Otuka, G. F. B. Almeida, X. Rosello-Mecho, M. V. Andres, and C. R. Mendonca, “Femtosecond Laser Fabrication of High-Q Whispering Gallery Mode Microresonators via Two-Photon Polymerization,” J. Polym. Sci., Part B: Polym. Phys. 55(7), 569–574 (2017).
[Crossref]

Macromolecules (1)

T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato, N. K. Viswanathan, J. Kumar, and S. K. Tripathy, “Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization,” Macromolecules 33(11), 4220–4225 (2000).
[Crossref]

Materials (1)

J. P. Fouassier, F. Morlet-Savary, J. Lalevee, X. Allonas, and C. Ley, “Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions,” Materials 3(12), 5130–5142 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (2)

B. Derkowska-Zielinska, L. Skowronski, M. Sypniewska, D. Chomicki, V. Smokal, O. Kharchenko, M. Naparty, and O. Krupka, “Functionalized polymers with strong push-pull azo chromophores in side chain for optical application,” Opt. Mater. 85, 391–398 (2018).
[Crossref]

V. Manzoni, L. Modesto-Costa, J. Del Nero, T. Andrade, and R. Gester, “Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte Carlo/DFT investigation,” Opt. Mater. 94, 152–159 (2019).
[Crossref]

Opt. Mater. Express (2)

Prog. Polym. Sci. (2)

K. S. Lee, R. H. Kim, D. Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, “Stable polymeric materials for nonlinear optics: a review based on azobenzene systems,” Prog. Polym. Sci. 29(1), 45–74 (2004).
[Crossref]

Small (1)

J. D. Leeds, J. T. Fourkas, and Y. Wang, “Achieving Ultrahigh Concentrations of Fluorescent Single-Walled Carbon Nanotubes Using Small-Molecule Viscosity Modifiers,” Small 9(2), 241–247 (2013).
[Crossref]

Other (1)

N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991), p. 628.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Absorption spectra of azobenzene-based dyes: (a) Sudan Black B (SBB), (b) Disperse Orange 3 (DO3), (c) Disperse Red 01 (DR1) and Disperse Red 13 (DR13).
Fig. 2.
Fig. 2. Polymerization threshold for acrylate samples prepared using azobenzene-based dyes as a photoinitiator.
Fig. 3.
Fig. 3. Optical microscopy (left) and Scanning Electron Microscopy (SEM - right) images of three-dimensional structures fabricated using azobenzene-based dyes as a photoinitiator in a concentration of 1.00 wt%: (a) Sudan Black B (SBB), (b) Disperse Orange 3 (DO3), (c) Disperse Red 1 (DR1) and Disperse Red 13 (DR13). In all images, the scale bar is 30 µm.
Fig. 4.
Fig. 4. Optical microscopy (left) and Scanning Electron Microscopy (SEM - right) images of three-dimensional structures fabricated using DR13 as a photoinitiator in a concentration of 1.00 wt%. The mechanical stability is maintained even for structures with a high aspect ratio. In both images, the scale bar is 15 µm.
Fig. 5.
Fig. 5. Optically induced birefringence experiment for microstructures doped with 1.00 wt% of DR13.

Tables (1)

Tables Icon

Table 1. σTPA at 790 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( z ) = 1 π q 0 ( z , 0 ) l n [ 1 + q 0 ( z , 0 ) e τ 2 ] d τ
q 0 = β I 0 L ( 1 + ( z 2 z 0 2 ) ) 1
σ TPA = ω β N ,