Abstract

The evaluation and comparison of the optical properties in the O and C bands of silicon nitride rib waveguides with integrated Ge2Sb2Te5 phase-change cells is reported. In straight rib waveguides, a high transmission contrast is observed in both bands when the Ge2Sb2Te5 cell is switched between states, being up to 2.5 dB/μm in the C-band and 6.4 dB/μm in the O-band. In the case of silicon nitride ring resonator waveguides, high quality factor resonances (Q ∼ 105) are found in both bands, leading to the provision of an ON-OFF switch characterized by an extinction ratio of 12 and 18 dB in O and C bands respectively. Finally, with the view to provide a comparison of the wavelength-dependent optical switching of the phase-change cell, a 3-dimensional finite-element method simulation is performed and a comparison of the optical-to-thermal energy conversion in both bands given.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  2. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  3. C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated phase-change photonic devices and systems,” MRS Bull. 44(09), 721–727 (2019).
    [Crossref]
  4. K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optical phase change materials in integrated silicon photonic devices,” Opt. Mater. Express 8(8), 2415–2429 (2018).
    [Crossref]
  5. T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
    [Crossref]
  6. T. Domínguez Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band,” Opt. Lett. 43(6), 1251–1254 (2018).
    [Crossref]
  7. J. Milgram, J. Wojcik, P. Mascher, and A. Knights, “Optically pumped si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
    [Crossref]
  8. S. Gaugiran, S. Gétin, J.-M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [Crossref]
  9. T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
    [Crossref]
  10. R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.
  11. C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
    [Crossref]
  12. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
    [Crossref]
  13. R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
    [Crossref]
  14. G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
    [Crossref]
  15. N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
    [Crossref]
  16. P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
    [Crossref]
  17. H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.
  18. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
    [Crossref]
  19. F. De Leonardis, R. Soref, V. M. Passaro, Y. Zhang, and J. Hu, “Broadband electro-optical crossbar switches using low-loss ge 2 sb 2 se 4 te 1 phase change material,” J. Lightwave Technol. 37(13), 3183–3191 (2019).
    [Crossref]
  20. J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
    [Crossref]
  21. P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
    [Crossref]
  22. N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
    [Crossref]
  23. E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
    [Crossref]
  24. Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
    [Crossref]
  25. J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
    [Crossref]
  26. J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
    [Crossref]
  27. Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.
  28. Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
    [Crossref]
  29. J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26(9), 12257–12265 (2018).
    [Crossref]
  30. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [Crossref]
  31. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
    [Crossref]
  32. J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
    [Crossref]
  33. H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  34. J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, N. B. Doylend, and A. Majumdar, “Gst-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
    [Crossref]
  35. X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,” Optica 7(3), 218–225 (2020).
    [Crossref]
  36. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref]
  37. X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
    [Crossref]
  38. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
    [Crossref]
  39. H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, and W. Huang, “Simulations of silicon-on-insulator channel-waveguide electrooptical 2×2 switches and 1×1 modulators using a Ge2Sb2Te5 self-holding layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).
    [Crossref]
  40. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
    [Crossref]
  41. Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2× 2 optical switch using phase-change material,” IEICE Electron. Express 5(12), 442–445 (2008).
    [Crossref]
  42. M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
    [Crossref]
  43. K. Kohary and C. D. Wright, “Electric field induced crystallization in phase-change materials for memory applications,” Appl. Phys. Lett. 98(22), 223102 (2011).
    [Crossref]
  44. J. Zheng, S. Zhu, P. Xu, S. T. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. & Interfaces (2020).

2020 (4)

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
[Crossref]

X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,” Optica 7(3), 218–225 (2020).
[Crossref]

2019 (7)

F. De Leonardis, R. Soref, V. M. Passaro, Y. Zhang, and J. Hu, “Broadband electro-optical crossbar switches using low-loss ge 2 sb 2 se 4 te 1 phase change material,” J. Lightwave Technol. 37(13), 3183–3191 (2019).
[Crossref]

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
[Crossref]

C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated phase-change photonic devices and systems,” MRS Bull. 44(09), 721–727 (2019).
[Crossref]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

2018 (8)

K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optical phase change materials in integrated silicon photonic devices,” Opt. Mater. Express 8(8), 2415–2429 (2018).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band,” Opt. Lett. 43(6), 1251–1254 (2018).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26(9), 12257–12265 (2018).
[Crossref]

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, N. B. Doylend, and A. Majumdar, “Gst-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
[Crossref]

2017 (5)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

2016 (3)

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

2015 (3)

H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, and W. Huang, “Simulations of silicon-on-insulator channel-waveguide electrooptical 2×2 switches and 1×1 modulators using a Ge2Sb2Te5 self-holding layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

2014 (1)

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

2013 (1)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

2011 (2)

K. Kohary and C. D. Wright, “Electric field induced crystallization in phase-change materials for memory applications,” Appl. Phys. Lett. 98(22), 223102 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref]

2010 (1)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

2009 (1)

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

2008 (1)

Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2× 2 optical switch using phase-change material,” IEICE Electron. Express 5(12), 442–445 (2008).
[Crossref]

2007 (2)

2005 (1)

Andrew M, W.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Baets, R.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Baldycheva, A.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
[Crossref]

E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
[Crossref]

Baños, R.

Bhaskaran, H.

X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,” Optica 7(3), 218–225 (2020).
[Crossref]

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated phase-change photonic devices and systems,” MRS Bull. 44(09), 721–727 (2019).
[Crossref]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
[Crossref]

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Bienstman, P.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Boniardi, M.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Breitwisch, M.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Bruns, G.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Cao, W.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Capmany, J.

J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Opt. Express 26(9), 12257–12265 (2018).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Carrillo, S. G.-C.

Chatelain, F.

Cheek, R.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Chen, J.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Cheng, H. Y.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Cheng, Z.

Ciocchini, N.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Clementi, M.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

Clemmen, S.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Colas, G.

Colburn, S.

Crudgington, L.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

De Galarreta, C. R.

De Leonardis, F.

Debnath, K.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

Dérouard, J.

Deshmukh, S.

Domenech, D.

Domínguez Bucio, T.

J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
[Crossref]

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band,” Opt. Lett. 43(6), 1251–1254 (2018).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Doylend, J. K.

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

Doylend, N. B.

Du, P. Y.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Dunham, S. T.

J. Zheng, S. Zhu, P. Xu, S. T. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. & Interfaces (2020).

Fan, L.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Faneca, J.

J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
[Crossref]

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

Fantini, P.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Farmakidis, N.

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

Fedeli, J.-M.

Feldmann, J.

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

Frantz, J.

Fuchs, A.

Fujii, T.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Gaeta, A. L.

Galli, M.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

Gan, F.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Gardes, F.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

Gardes, F. Y.

J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band,” Opt. Lett. 43(6), 1251–1254 (2018).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Gasulla, I.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Gaugiran, S.

Gemo, E.

Gétin, S.

Haglund, R. F.

Hanss, J.

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Hao, T.

Happ, T.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Hasegawa, T.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Hayat, H.

Helin, P.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Hendrickson, J.

Honma, Y.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Hsu, T. H.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Hu, J.

Hu, Z.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Huang, W.

Ielmini, D.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Ikuma, Y.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2× 2 optical switch using phase-change material,” IEICE Electron. Express 5(12), 442–445 (2008).
[Crossref]

Joseph, E.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Kawashima, H.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Khanolkar, A.

Khokhar, A. Z.

T. Domínguez Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band,” Opt. Lett. 43(6), 1251–1254 (2018).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Kintaka, K.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Knights, A.

Kohary, K.

K. Kohary and C. D. Wright, “Electric field induced crystallization in phase-change materials for memory applications,” Appl. Phys. Lett. 98(22), 223102 (2011).
[Crossref]

Kund, M.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Kuwahara, M.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Kuyken, B.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Lacaita, A. L.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Lacava, C.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Lai, E. K.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Lai, S. C.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Lam, C.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Laudato, M.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Le Thomas, N.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Leaird, D. E.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Levy, J. S.

Lewin, M.

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Li, K.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Li, M.

Li, P.

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Li, W.

Li, X.

Liang, H.

Lipson, M.

Lu, L.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Lung, H. L.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Majumdar, A.

Mascher, P.

Mashanovich, G. Z.

T. Domínguez Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band,” Opt. Lett. 43(6), 1251–1254 (2018).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Maß, T. W.

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Merkelbach, P.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Michel, A.-K. U.

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Milgram, J.

Miller, K. J.

Mittal, S.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Morita, K.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Mu, J.

Muñoz, P.

Myers, J.

Niu, B.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Okawachi, Y.

Osmond, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Passaro, V. M.

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Pérez, D.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Pernice, W.

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

Pernice, W. H.

X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,” Optica 7(3), 218–225 (2020).
[Crossref]

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated phase-change photonic devices and systems,” MRS Bull. 44(09), 721–727 (2019).
[Crossref]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Petropoulos, P.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Philipp, J.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Pop, E.

Pruneri, V.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Qi, M.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Rahman, B. M. A.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Raoux, S.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Rios, C.

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Ríos, C.

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Rudé, M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Saha, K.

Saiki, T.

Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2× 2 optical switch using phase-change material,” IEICE Electron. Express 5(12), 442–445 (2008).
[Crossref]

Sakuma, H.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Salinga, M.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Schlockermann, C.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

Schrott, A.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Severi, S.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Shen, H.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Shimada, K.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Shoji, Y.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Simpson, R. E.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Skandalos, I.

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

Sohma, K.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Song, J.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Soref, R.

Stankovic, S.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Stegmaier, M.

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Subramanian, A. Z.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Suzuki, M.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Swett, J. L.

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

Tamura, Y.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Tan, J.

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

Tanaka, D.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Tang, J.

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Thomson, D. J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Tsuda, H.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2× 2 optical switch using phase-change material,” IEICE Electron. Express 5(12), 442–445 (2008).
[Crossref]

van der Tol, J. J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Van Thourhout, D.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

Varesi, E.

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Varghese, L. T.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, J.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Wang, X.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

Weiss, S. M.

Wen, Y. H.

Wojcik, J.

Wright, C.

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

Wright, C. D.

X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,” Optica 7(3), 218–225 (2020).
[Crossref]

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated phase-change photonic devices and systems,” MRS Bull. 44(09), 721–727 (2019).
[Crossref]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

K. Kohary and C. D. Wright, “Electric field induced crystallization in phase-change materials for memory applications,” Appl. Phys. Lett. 98(22), 223102 (2011).
[Crossref]

Wu, J. Y.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Wu, R.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Wu, X.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

Xu, J.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Xu, L.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Xu, P.

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, N. B. Doylend, and A. Majumdar, “Gst-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
[Crossref]

J. Zheng, S. Zhu, P. Xu, S. T. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. & Interfaces (2020).

Xu, Y.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Xuan, Y.

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

Yamamoto, Y.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “The first 0.14-db/km loss optical fiber and its impact on submarine transmission,” J. Lightwave Technol. 36(1), 44–49 (2018).
[Crossref]

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

Yang, X.

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Youngblood, N.

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

X. Li, N. Youngblood, Z. Cheng, S. G.-C. Carrillo, E. Gemo, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,” Optica 7(3), 218–225 (2020).
[Crossref]

X. Li, N. Youngblood, C. Ríos, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,” Optica 6(1), 1–6 (2019).
[Crossref]

E. Gemo, S. G.-C. Carrillo, C. R. De Galarreta, A. Baldycheva, H. Hayat, N. Youngblood, H. Bhaskaran, W. H. Pernice, and C. D. Wright, “Plasmonically-enhanced all-optical integrated phase-change memory,” Opt. Express 27(17), 24724–24737 (2019).
[Crossref]

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

C. Rios, M. Stegmaier, Z. Cheng, N. Youngblood, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics,” Opt. Mater. Express 8(9), 2455–2470 (2018).
[Crossref]

Zhang, H.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Zhang, Y.

Zheng, J.

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, N. B. Doylend, and A. Majumdar, “Gst-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8(6), 1551–1561 (2018).
[Crossref]

J. Zheng, S. Zhu, P. Xu, S. T. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. & Interfaces (2020).

Zhou, L.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Zhu, N.

Zhu, S.

J. Zheng, S. Zhu, P. Xu, S. T. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. & Interfaces (2020).

Zhu, Y.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

ACS Photonics (2)

P. Xu, J. Zheng, J. K. Doylend, and A. Majumdar, “Low-loss and broadband nonvolatile phase-change directional coupler switches,” ACS Photonics 6(2), 553–557 (2019).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Adv. Mater. (1)

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. Pernice, “Nonvolatile all-optical 1x2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 1600346 (2017).
[Crossref]

APL Photonics (1)

R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

Appl. Phys. Lett. (4)

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. Happ, J. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett. 95(4), 043108 (2009).
[Crossref]

J. Faneca, T. Domínguez Bucio, F. Y. Gardes, and A. Baldycheva, “O-band N-rich silicon nitride MZI based on GST,” Appl. Phys. Lett. 116(9), 093502 (2020).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. van der Tol, and V. Pruneri, “Optical switching at 1.55 μ m in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

K. Kohary and C. D. Wright, “Electric field induced crystallization in phase-change materials for memory applications,” Appl. Phys. Lett. 98(22), 223102 (2011).
[Crossref]

Electron. Lett. (1)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Domínguez Bucio, C. Lacava, M. Clementi, J. Faneca, I. Skandalos, A. Baldycheva, M. Galli, K. Debnath, P. Petropoulos, and F. Gardes, “Silicon nitride photonics for the near-infrared,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–13 (2020).
[Crossref]

J. Feldmann, N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated 256 cell photonic phase-change memory with 512-bit capacity,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2020).
[Crossref]

IEEE Photonics J. (1)

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, J. Xu, J. Song, Z. Hu, L. Xu, and J. Chen, “Ultracompact si-gst hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

IEICE Electron. Express (1)

Y. Ikuma, T. Saiki, and H. Tsuda, “Proposal of a small self-holding 2× 2 optical switch using phase-change material,” IEICE Electron. Express 5(12), 442–445 (2008).
[Crossref]

J. Lightwave Technol. (3)

J. Phys. D: Appl. Phys. (1)

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

MRS Bull. (1)

C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated phase-change photonic devices and systems,” MRS Bull. 44(09), 721–727 (2019).
[Crossref]

Nat. Commun. (2)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, W. Andrew M, and M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun. 6(1), 5957 (2015).
[Crossref]

Nat. Mater. (2)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

P. Li, X. Yang, T. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Nat. Photonics (2)

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Nature (1)

J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature 569(7755), 208–214 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (3)

Optica (2)

Sci. Adv. (2)

N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, and H. Bhaskaran, “Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,” Sci. Adv. 5(11), eaaw2687 (2019).
[Crossref]

Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref]

Sci. Rep. (1)

N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A. L. Lacaita, and D. Ielmini, “Bipolar switching in chalcogenide phase change memory,” Sci. Rep. 6(1), 29162 (2016).
[Crossref]

Other (4)

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2016), pp. Th3J–1.

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, Y. Zhu, E. K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S. C. Lai, H. L. Lung, and C. Lam, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the gexsbytez phase change material,” in 2011 International Electron Devices Meeting, (2011), pp. 3.4.1–3.4.4.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-db/km loss optical fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), pp. Th5D–1.

J. Zheng, S. Zhu, P. Xu, S. T. Dunham, and A. Majumdar, “Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters,” ACS Appl. Mater. & Interfaces (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Refractive index, $n$, and (b) extinction coefficient, $k$, ellipsometry measurements in amorphous (solid black lines) and crystalline (solid red lines) state for Ge$_2$Sb$_2$Te$_5$ (GST).
Fig. 2.
Fig. 2. Eigenmode simulation of the fundamental TE optical mode of a rib silicon nitride waveguide at 1310 nm wavelength, with a GST thin layer cell on top in the (a) amorphous state (b) crystalline state; (c) mode attenuation and (d) effective refractive index both as a function of PCM layer thickness.
Fig. 3.
Fig. 3. Eigenmode simulation of the fundamental TE optical mode of a rib silicon nitride waveguide at 1550 nm wavelength, with a GST thin layer cell on top in the (a) amorphous state (b) crystalline state; (c) mode attenuation and (d) effective refractive index both as a function of PCM layer thickness.
Fig. 4.
Fig. 4. Optical microscope images of the fabricated structures. (a) Rib micro-ring resonator waveguide at 1550 nm with the deposited phase change material GST. (b) Rib waveguide with a deposited GST cell with length $L_{pcm}$ = 4 $\mu$m. (c) Rib waveguides with different lengths of the phase change material and a TE grating coupler inset image. (d) Add-drop filters with the phase change material deposited in the right-hand side of the ring resonator.
Fig. 5.
Fig. 5. (a) Measured losses in the waveguide for different PCM cell lengths in both states, amorphous (black line) and crystalline (red line) at 1310 nm. (b) Measured loss coefficient for different wavelengths in both cell states, amorphous (black dots) and crystalline (red dots).
Fig. 6.
Fig. 6. (a) Normalized spectrum of a rib ring silicon nitride resonator waveguide with radius, R= 100 $\mu$m, for the bare structure, without the PCM (dashed black lines) and with a phase change material cell length, $L_{pcm}$ = 5 $\mu$m and 8 $\mu$m width deposited on top of the ring structure for both, the amorphous state of the PCM (solid black lines) and the crystalline state of the PCM (solid red line). (b) Zoom in image of the resonances in both states of the phase change material showing the device principle, ON-OFF operation.
Fig. 7.
Fig. 7. (a) Measured losses in the waveguide for different PCM cell lengths in both states, amorphous (black line) and crystalline (red line) at 1550 nm. (b) Measured loss coefficient for different wavelengths in both cell states, amorphous (black dots) and crystalline (red dots).
Fig. 8.
Fig. 8. (a) Normalized spectrum of a rib ring silicon nitride resonator waveguide with radius, R= 100 $\mu$m, for the bare structure, without the PCM (dashed black lines) and with a phase change material cell length, $L_{pcm}$ = 4 $\mu$m and 8 $\mu$m width deposited on top of the ring structure for both, the amorphous state of the PCM (solid black lines) and the crystalline state of the PCM (solid red line). (b) Zoom in image of the resonances in both states of the phase change material showing the device principle, ON-OFF operation.
Fig. 9.
Fig. 9. (a) Maximum temperature and (b) average temperature reached in the PCM unit cell for four different states: amorphous state in the C-band (a-C-band) in blue, crystalline state in the C-band (c-C-band) in yellow, amorphous state in the O-band (a-O-band) in red and crystalline state in the O-band (c-O-band) in purple. Also, the input pulse is represented in the right axes of figure (a) in green.

Tables (1)

Tables Icon

Table 1. The device performance comparison between the O-band (1310 nm), C-band (1550 nm) and theoretical simulated results is presented.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n e f f ( a c ) = λ F S R Δ λ ( a c ) L p c m
η = E G S T E p u l s e = ρ C P ( T T 0 ) d V P 0 Δ t ,

Metrics