Abstract

Passive radiative cooling has had a renaissance in energy consumption, emission reduction, and environmental protection over the past two decades. Ultimate absorptivity determines the cooler’s performance, so the ideal absorptivity is the target for designing passive radiative coolers. In this paper, we systematically analyzed passive radiative cooling, including angle-dependent and wavelength-dependent thermal radiative power Prad, absorption power from the ambient Patm, their power difference Pdiff, absorption power from the sun Psun and thermally conductive and convection power Pcc. During the analytical process, we show the key factors of cooling and analyze the ideal absorptivity of radiators in four conditions. The analytical progress and results will give a reference to the design of the radiator in the future.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
    [Crossref]
  2. G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
    [Crossref]
  3. X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
    [Crossref]
  4. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
    [Crossref]
  5. B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
    [Crossref]
  6. E. Lee and T. Luo, “Black body-like radiative cooling for flexible thin-film solar cells,” Sol. Energy Mater. Sol. Cells 194, 222–228 (2019).
    [Crossref]
  7. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref]
  8. P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
    [Crossref]
  9. E. A. Goldstein, A. P. Raman, and S. H. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
    [Crossref]
  10. E. du Marchie van Voorthuysen and R. Roes, “Blue sky cooling for parabolic trough plants,” Energy Procedia 49, 71–79 (2014).
    [Crossref]
  11. A. K. Stark and J. F. Klausner, “An R&D strategy to decouple energy from water,” Joule 1(3), 416–420 (2017).
    [Crossref]
  12. A. K. Head, “Method and means for producing refrigeration by selective radiation,” (1962).
  13. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  14. C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
    [Crossref]
  15. T. S. Eriksson and C. G. Granqvist, “Radiative cooling computed for model atmospheres,” Appl. Opt. 21(23), 4381–4388 (1982).
    [Crossref]
  16. C. G. Granqvist, “The radiative cooling of selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
    [Crossref]
  17. P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. 14(1), 87–90 (1979).
    [Crossref]
  18. T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
    [Crossref]
  19. T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
    [Crossref]
  20. A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
    [Crossref]
  21. E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
    [Crossref]
  22. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  23. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  24. H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
    [Crossref]
  25. Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
    [Crossref]
  26. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  27. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref]
  28. A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. 2(9), 1500119 (2015).
    [Crossref]
  29. Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
    [Crossref]
  30. W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
    [Crossref]
  31. M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  32. D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
    [Crossref]
  33. S. A. Zolotovskaya, S. Wackerow, H. Neupert, M. J. Barnes, L. V. Cid, B. Teissandier, A. T. P. Fontenla, and A. Abdolvand, “High-performance thermal emitters based on laser-engineered metal surfaces,” Opt. Mater. Express 10(2), 622 (2020).
    [Crossref]
  34. M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
    [Crossref]
  35. T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
    [Crossref]
  36. L. X. Zhu, A. P. Raman, and S. H. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
    [Crossref]
  37. X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
    [Crossref]
  38. S. Vall and A. Castell, “Radiative cooling as low-grade energy source: A literature review,” Renewable Sustainable Energy Rev. 77, 803–820 (2017).
    [Crossref]
  39. J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
    [Crossref]
  40. M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling,” Sol. Energy Mater. Sol. Cells 178, 115–128 (2018).
    [Crossref]
  41. B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
    [Crossref]
  42. W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications Invited,” Opt. Express 26(12), 15995–16021 (2018).
    [Crossref]
  43. D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
    [Crossref]
  44. M. A. Zaman, “Photonic radiative cooler optimization using Taguchi's method,” Int. J. Therm. Sci. 144, 21–26 (2019).
    [Crossref]
  45. Y. Zhou, S. Zheng, and G. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage. 197, 111859 (2019).
    [Crossref]
  46. M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Spectrally selective filter design for passive radiative cooling,” J. Opt. Soc. Am. B 37(4), 1173 (2020).
    [Crossref]
  47. Y. Li, L. Li, F. Wang, H. Ge, R. Xie, and B. An, “Two broad absorption bands in infrared atmosphere transparent windows by trapezoid multilayered grating,” Opt. Mater. Express 10(2), 682–692 (2020).
    [Crossref]
  48. Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
    [Crossref]
  49. W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
    [Crossref]
  50. G. O. IR transmission spectra, “ http://www.gemini.edu/?q=node/10789.”
  51. A. Kong, B. Cai, P. Shi, and X.-C. Yuan, “Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling,” Opt. Express 27(21), 30102–30115 (2019).
    [Crossref]
  52. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  53. A. S. f. T. a. M. Air mass 1.5 spectra, “ http://rredc.nrel.gov/solar/spectra/am1.5/ (Available from:).” (American Society for Testing and Materials (ASTM)).

2020 (3)

2019 (6)

A. Kong, B. Cai, P. Shi, and X.-C. Yuan, “Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling,” Opt. Express 27(21), 30102–30115 (2019).
[Crossref]

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

M. A. Zaman, “Photonic radiative cooler optimization using Taguchi's method,” Int. J. Therm. Sci. 144, 21–26 (2019).
[Crossref]

Y. Zhou, S. Zheng, and G. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage. 197, 111859 (2019).
[Crossref]

E. Lee and T. Luo, “Black body-like radiative cooling for flexible thin-film solar cells,” Sol. Energy Mater. Sol. Cells 194, 222–228 (2019).
[Crossref]

2018 (9)

W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
[Crossref]

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications Invited,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling,” Sol. Energy Mater. Sol. Cells 178, 115–128 (2018).
[Crossref]

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

2017 (8)

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: A literature review,” Renewable Sustainable Energy Rev. 77, 803–820 (2017).
[Crossref]

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

A. K. Stark and J. F. Klausner, “An R&D strategy to decouple energy from water,” Joule 1(3), 416–420 (2017).
[Crossref]

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. H. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

2016 (3)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
[Crossref]

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

2015 (3)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

L. X. Zhu, A. P. Raman, and S. H. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

2014 (6)

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. du Marchie van Voorthuysen and R. Roes, “Blue sky cooling for parabolic trough plants,” Energy Procedia 49, 71–79 (2014).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

2013 (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2010 (1)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

1995 (1)

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

1992 (1)

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

1984 (1)

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
[Crossref]

1982 (2)

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

T. S. Eriksson and C. G. Granqvist, “Radiative cooling computed for model atmospheres,” Appl. Opt. 21(23), 4381–4388 (1982).
[Crossref]

1981 (2)

C. G. Granqvist, “The radiative cooling of selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1979 (1)

P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. 14(1), 87–90 (1979).
[Crossref]

1978 (1)

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Abdolvand, A.

Aili, A.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Alam, M. A.

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Alvine, K.

W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
[Crossref]

An, B.

An, B. W.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Ao, X.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Arnold, M.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
[Crossref]

Bao, H.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Barnes, M. J.

Bermel, P.

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Cai, B.

Cai, L. L.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Caillol, S.

T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
[Crossref]

Castell, A.

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: A literature review,” Renewable Sustainable Energy Rev. 77, 803–820 (2017).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Catrysse, P. B.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Chen, H.

Chen, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Chen, N.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Chen, X.

Chen, Z.

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

Cid, L. V.

Cortie, M.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
[Crossref]

Cuevas, J. C.

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Cui, Y.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

de Richter, R.

T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
[Crossref]

Ding, R.

du Marchie van Voorthuysen, E.

E. du Marchie van Voorthuysen and R. Roes, “Blue sky cooling for parabolic trough plants,” Energy Procedia 49, 71–79 (2014).
[Crossref]

Eriksson, T. S.

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
[Crossref]

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

T. S. Eriksson and C. G. Granqvist, “Radiative cooling computed for model atmospheres,” Appl. Opt. 21(23), 4381–4388 (1982).
[Crossref]

Fan, S.

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications Invited,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Fan, S. H.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. H. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

L. X. Zhu, A. P. Raman, and S. H. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Fang, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Fernandez, N.

W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
[Crossref]

Fontenla, A. T. P.

Gao, J.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

García-Vidal, F. J.

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Ge, H.

Gentle, A.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Goldstein, E. A.

E. A. Goldstein, A. P. Raman, and S. H. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Goswami, D. Y.

M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling,” Sol. Energy Mater. Sol. Cells 178, 115–128 (2018).
[Crossref]

Granqvist, C. G.

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
[Crossref]

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

T. S. Eriksson and C. G. Granqvist, “Radiative cooling computed for model atmospheres,” Appl. Opt. 21(23), 4381–4388 (1982).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist, “The radiative cooling of selective surfaces,” Appl. Opt. 20(15), 2606–2615 (1981).
[Crossref]

Grenier, P.

P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. 14(1), 87–90 (1979).
[Crossref]

Gu, M.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hanif, M.

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

Harrison, A. W.

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

He, L.

Head, A. K.

A. K. Head, “Method and means for producing refrigeration by selective radiation,” (1962).

Hjortsberg, A.

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
[Crossref]

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hou, J.

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

Hsu, P. C.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Hu, M.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Hu, W.

Huang, Y. J.

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Huang, Z.

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Katipamula, S.

W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
[Crossref]

Kecebas, M. A.

Klausner, J. F.

A. K. Stark and J. F. Klausner, “An R&D strategy to decouple energy from water,” Joule 1(3), 416–420 (2017).
[Crossref]

Kong, A.

Kosar, A.

Lee, E.

E. Lee and T. Luo, “Black body-like radiative cooling for flexible thin-film solar cells,” Sol. Energy Mater. Sol. Cells 194, 222–228 (2019).
[Crossref]

Li, L.

Li, L. Z.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Li, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Li, W.

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications Invited,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

Li, X.

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Li, Y.

Li, Y. L.

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Liao, L.

Liu, C.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Liu, K.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Liu, W.

T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
[Crossref]

Liu, Y.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Lu, W.

Lu, X.

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

Luo, T.

E. Lee and T. Luo, “Black body-like radiative cooling for flexible thin-film solar cells,” Sol. Energy Mater. Sol. Cells 194, 222–228 (2019).
[Crossref]

Luo, X. G.

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Lushiku, E. M.

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
[Crossref]

Ma, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Ma, X. L.

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Mahlia, T. M. I.

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

Majumdar, A.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Menguc, M. P.

Metselaar, H. S. C.

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

Ming, T.

T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
[Crossref]

Neupert, H.

Niklasson, G. A.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

Nilsson, T. M. J.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

Pei, G.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Peng, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Peng, Y. C.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Pu, M. B.

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Raman, A.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

E. A. Goldstein, A. P. Raman, and S. H. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

L. X. Zhu, A. P. Raman, and S. H. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Roes, R.

E. du Marchie van Voorthuysen and R. Roes, “Blue sky cooling for parabolic trough plants,” Energy Procedia 49, 71–79 (2014).
[Crossref]

Ruan, X.

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Saksahdan, T. J.

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

Sendur, K.

Shi, P.

Shi, Y.

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Smith, G.

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Song, A. Y.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Stark, A. K.

A. K. Stark and J. F. Klausner, “An R&D strategy to decouple energy from water,” Joule 1(3), 416–420 (2017).
[Crossref]

Stefanakos, E.

M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling,” Sol. Energy Mater. Sol. Cells 178, 115–128 (2018).
[Crossref]

Sun, X. S.

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Sun, Y. B.

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Tan, G.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Teissandier, B.

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Vall, S.

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: A literature review,” Renewable Sustainable Energy Rev. 77, 803–820 (2017).
[Crossref]

Wackerow, S.

Walton, M. R.

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

Wang, B.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Wang, F.

Wang, H. L.

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

Wang, K. X.

Wang, W. M.

W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
[Crossref]

Wu, C. L.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Wu, D.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Xie, J.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Xie, R.

Xu, P.

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

Xu, S.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Xu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yan, C.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Yang, R.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yang, T.

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

Ye, H.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Ye, Z.

Yin, X.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yu, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yuan, X.-C.

Zaman, M. A.

M. A. Zaman, “Photonic radiative cooler optimization using Taguchi's method,” Int. J. Therm. Sci. 144, 21–26 (2019).
[Crossref]

Zare, A.

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

Zeyghami, M.

M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling,” Sol. Energy Mater. Sol. Cells 178, 115–128 (2018).
[Crossref]

Zhai, S.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Zhai, Y.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhang, G.

Y. Zhou, S. Zheng, and G. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage. 197, 111859 (2019).
[Crossref]

Zhang, Z.

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Zhao, B.

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Zhao, C. Y.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Zhao, D.

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, Z. Y.

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Zheng, S.

Y. Zhou, S. Zheng, and G. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage. 197, 111859 (2019).
[Crossref]

Zhou, Y.

Y. Zhou, S. Zheng, and G. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage. 197, 111859 (2019).
[Crossref]

Zhou, Z. G.

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Zhu, L. X.

L. X. Zhu, A. P. Raman, and S. H. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Zolotovskaya, S. A.

ACS Photonics (1)

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Adv. Opt. Mater. (1)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Adv. Sci. (1)

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. 2(9), 1500119 (2015).
[Crossref]

Appl. Energy (1)

B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, “Radiative cooling: A review of fundamentals, materials, applications, and prospects,” Appl. Energy 236, 489–513 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Rev. (1)

D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, “Radiative sky cooling: Fundamental principles, materials, and applications,” Appl. Phys. Rev. 6(2), 021306 (2019).
[Crossref]

Energy Convers. Manage. (1)

Y. Zhou, S. Zheng, and G. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage. 197, 111859 (2019).
[Crossref]

Energy Procedia (1)

E. du Marchie van Voorthuysen and R. Roes, “Blue sky cooling for parabolic trough plants,” Energy Procedia 49, 71–79 (2014).
[Crossref]

Int. J. Heat Mass Transfer (1)

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Int. J. Therm. Sci. (1)

M. A. Zaman, “Photonic radiative cooler optimization using Taguchi's method,” Int. J. Therm. Sci. 144, 21–26 (2019).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Opt. Soc. Am. B (1)

Joule (1)

A. K. Stark and J. F. Klausner, “An R&D strategy to decouple energy from water,” Joule 1(3), 416–420 (2017).
[Crossref]

Mater. Des. (1)

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Nano Lett. (2)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Nanophotonics (2)

X. S. Sun, Y. B. Sun, Z. G. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

G. Smith, A. Gentle, M. Arnold, and M. Cortie, “Nanophotonics-enabled smart windows, buildings and wearables,” Nanophotonics 5(1), 55–73 (2016).
[Crossref]

Nat. Commun. (1)

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

Nat. Energy (1)

E. A. Goldstein, A. P. Raman, and S. H. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Commun. (1)

Y. J. Huang, M. B. Pu, Z. Y. Zhao, X. Li, X. L. Ma, and X. G. Luo, “Broadband metamaterial as an “invisible'‘ radiative cooling coat,” Opt. Commun. 407, 204–207 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

Y. L. Li, B. W. An, L. Z. Li, and J. Gao, “Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures,” Opt. Quantum Electron. 50(12), 459 (2018).
[Crossref]

Optica (1)

Proc. Natl. Acad. Sci. U. S. A. (1)

L. X. Zhu, A. P. Raman, and S. H. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Renewable Energy (1)

W. M. Wang, N. Fernandez, S. Katipamula, and K. Alvine, “Performance assessment of a photonic radiative cooling system for office buildings,” Renewable Energy 118, 265–277 (2018).
[Crossref]

Renewable Sustainable Energy Rev. (4)

X. Lu, P. Xu, H. L. Wang, T. Yang, and J. Hou, “Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art,” Renewable Sustainable Energy Rev. 65, 1079–1097 (2016).
[Crossref]

S. Vall and A. Castell, “Radiative cooling as low-grade energy source: A literature review,” Renewable Sustainable Energy Rev. 77, 803–820 (2017).
[Crossref]

M. Hanif, T. M. I. Mahlia, A. Zare, T. J. Saksahdan, and H. S. C. Metselaar, “Potential energy savings by radiative cooling system for a building in tropical climate,” Renewable Sustainable Energy Rev. 32, 642–650 (2014).
[Crossref]

T. Ming, R. de Richter, W. Liu, and S. Caillol, “Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?” Renewable Sustainable Energy Rev. 31, 792–834 (2014).
[Crossref]

Rev. Phys. Appl. (1)

P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. 14(1), 87–90 (1979).
[Crossref]

Sci. Adv. (1)

P. C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. C. Peng, J. Xie, K. Liu, C. L. Wu, P. B. Catrysse, L. L. Cai, S. Zhai, A. Majumdar, S. H. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref]

Science (2)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Sol. Energy (3)

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

A. W. Harrison and M. R. Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20(2), 185–188 (1978).
[Crossref]

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

E. Lee and T. Luo, “Black body-like radiative cooling for flexible thin-film solar cells,” Sol. Energy Mater. Sol. Cells 194, 222–228 (2019).
[Crossref]

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling,” Sol. Energy Mater. Sol. Cells 178, 115–128 (2018).
[Crossref]

Solar & Wind Technol. (1)

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Solar & Wind Technol. 1(2), 115–121 (1984).
[Crossref]

Thin Solid Films (1)

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

Other (3)

A. K. Head, “Method and means for producing refrigeration by selective radiation,” (1962).

A. S. f. T. a. M. Air mass 1.5 spectra, “ http://rredc.nrel.gov/solar/spectra/am1.5/ (Available from:).” (American Society for Testing and Materials (ASTM)).

G. O. IR transmission spectra, “ http://www.gemini.edu/?q=node/10789.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic and heat transfer model of daytime passive radiative cooling. Prad is the thermal radiative cooling power by radiating heat energy to outer space at 3 K, Patm is the heating power absorbed from the atmospheric thermal radiation, ${P_{\textrm{sun}}}$ is the heating power absorbed from solar irradiance, and ${P_{\textrm{cc}}}$ is the heating power absorbed through thermal conduction and thermal convection between cooler and ambient.
Fig. 2.
Fig. 2. (a) Absorptivity of six types of absorbers, labeled as Cooler 1, Cooler 2, Cooler 3, Cooler 4, Cooler 5 and Cooler 6. (b) Thermal radiative cooling power Pλ at ${T_c} = $300 K. (c) Thermal radiative cooling power Pθ at ${T_c} = $300 K. (d) Thermal radiative cooling intensity Prad at different ${T_c}$.
Fig. 3.
Fig. 3. (a) Absorptivity of the atmosphere [50] in the zenith direction in the wavelength range from 0.3 µm to 40 µm. (b) Absorptivity of the atmosphere [50] when the incident angle changes from 0 degrees to 89 degrees. (c) Wavelength and angle-dependent thermal absorption power Pλθ_atm of Cooler 6 at 300 K ambient temperature. (d) Thermal absorption intensity Patm of the six coolers at different ambient temperatures Tatm.
Fig. 4.
Fig. 4. (a) Pdiff_λ of Cooler 6 at different Tc when Tatm=300 K. (b) The lines in (a) at three different Tc of 260 K, 300 K, and 340 K. (c) Pdiff_θ of Cooler 6 at different ${T_c}\; $when Tatm = 300 K.
Fig. 5.
Fig. 5. (a) At Tc = 260 K and Tatm=300 K, the difference between Pθ and Pθ_atm, labeled as Pdiff_θ. (b) Pdiff_θ at Tc = 300 K and Tatm=300 K. (c) Pdiff_θ at Tc = 340 K and Tatm=300 K. (d) Pdiff as Tc increases when Tatm=300 K.
Fig. 6.
Fig. 6. Solar spectrum of AM1.5 [53] in 0.3 µm - 4 µm. The part in 2.5 µm - 4 µm is enlarged in the inset.
Fig. 7.
Fig. 7. Thermal conductive and convection power as the temperature difference ${T_{\textrm{atm}}} - {T_\textrm{c}}$.
Fig. 8.
Fig. 8. (a) In the daytime, net radiative cooling power Pnet as Tc increases when Tatm=300 K, assuming the absorptivity of radiators in solar spectrum 0.3 µm - 4 µm is 3% and hc = 0. (b) In the daytime, net radiative cooling power ${P_{\textrm{net}}}$ as Tc increases when Tatm=300 K, assuming the absorptivity of radiators in solar spectrum 0.3 µm - 4 µm is 3% and hc = 6 W/m2/K. (c) The ideal absorptivity in above-ambient and sub-ambient applications with or without exposure to sunlight.

Tables (2)

Tables Icon

Table 1. Properties of the six types of coolers

Tables Icon

Table 2. The Pdiff at different Tc when Tatm = 300 K

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P net ( T c , T atm ) = P rad ( T c ) P atm ( T atm ) P sun P cc.
P diff ( T c , T atm ) = P rad ( T c ) P atm ( T atm )
P rad ( T c ) = A d Ω cos θ 0 I B ( T c , λ ) ε ( λ , θ ) d λ .
I B ( T c , λ ) = 2 h c 2 / λ 5 / ( e h c / λ k B T c 1 ) ,
P rad ( T c ) = A 0 π 2 0 P λ θ d λ d θ = A 0 P λ d λ = A 0 π 2 P θ d θ ,
P atm ( T atm ) = A d Ω cos θ 0 I B ( T atm , λ ) ε ( λ , θ ) ε atm ( λ , θ ) d λ = A 0 π 2 0 P λ θ _ a t m d λ d θ = A 0 P λ _ a t m d λ = A 0 π 2 P θ _ a t m d θ ,
ε atm ( λ , θ ) = 1 t ( λ ) 1 / cos θ .
P sun ( T ) = A 0 ε ( λ , θ sun ) I AM1.5 ( λ ) d λ ,
P cc ( T , T atm ) = A h c ( T atm T c ) ,

Metrics