Abstract

Octave spanning all-normal dispersion supercontinuum generation (SCG) was experimentally demonstrated in a solid, suspended-core fiber (SCF) infiltrated with water. Replacement of air with water in the cladding air-holes leads to a dramatic modification of the dispersion profile of the fiber, significantly flattening the characteristic over the visible and much of the near-infrared wavelength range at normal values. In such a fiber infiltrated with water, all-normal dispersion supercontinuum was generated with the spectral coverage from 435 nm to 1330 nm using femtosecond pumping with the output peak power of 150 kW and 800 nm central wavelength. The SCF without water infiltration – air in the cladding region – had a zero-dispersion wavelength at 760 nm and enabled the generation of the anomalous dispersion dynamics-based SCG in the wavelength range from 450 nm to 1250 nm. We also numerically calculated the coherence of simulated supercontinuum pulses with one-photon-per-mode noise seeds and point out that the all-normal dispersion SCG in suspended-core fiber infiltrated with water has the potential for high temporal coherence, while the fiber without water infiltration shows gradual decoherence of generated supercontinuum pulses with increasing pump power, over similar peak power range.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [Crossref]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  4. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  5. R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
    [Crossref]
  6. J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
    [Crossref]
  7. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  8. H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
    [Crossref]
  9. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  10. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  11. A. Lemière, F. Désévédavy, P. Mathey, P. Froidevaux, G. Gadret, J.-C. Jules, C. Aquilina, B. Kibler, P. Béjot, F. Billard, O. Faucher, and F. Smektala, “Mid-infrared supercontinuum generation from 2 to 14um in arsenic- and antimony-free chalcogenide glass fibers,” J. Opt. Soc. Am. B 36(2), A183–A192 (2019).
    [Crossref]
  12. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  13. M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637–7644 (2017).
    [Crossref]
  14. A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
    [Crossref]
  15. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [Crossref]
  16. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]
  17. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Res. 5(6), 710–727 (2017).
    [Crossref]
  18. K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
    [Crossref]
  19. Y. Yuan, P. Yang, X. Peng, Z. Cao, S. Ding, N. Zhang, Z. Liu, P. Zhang, X. Wang, and S. Dai, “Ultrabroadband and coherent mid-infrared supercontinuum generation in all-normal dispersion Te-based chalcogenide all-solid microstructured fiber,” J. Opt. Soc. Am. B 37(2), 227–232 (2020).
    [Crossref]
  20. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [Crossref]
  21. P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
    [Crossref]
  22. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [Crossref]
  23. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
    [Crossref]
  24. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21(26), 32141–32150 (2013).
    [Crossref]
  25. A. N. Ghosh, M. Klimczak, R. Buczynski, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers,” J. Opt. Soc. Am. B 35(9), 2311–2316 (2018).
    [Crossref]
  26. S. O. Leonov, Y. Wang, V. S. Shiryaev, G. E. Snopatin, B. S. Stepanov, V. G. Plotnichenko, E. Vicentini, A. Gambetta, N. Coluccelli, C. Svelto, P. Laporta, and G. Galzerano, “Coherent mid-infrared supercontinuum generation in tapered suspended-core As39Se61 fibers pumped by a few-optical-cycle Cr:ZnSe laser,” Opt. Lett. 45(6), 1346–1349 (2020).
    [Crossref]
  27. E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
    [Crossref]
  28. T. Peng, T. Xu, and X. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
    [Crossref]
  29. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [Crossref]
  30. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3(9), 1358–1364 (2013).
    [Crossref]
  31. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
    [Crossref]
  32. V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
    [Crossref]
  33. V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
    [Crossref]
  34. V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak, R. Buczyński, and J. Pniewski, “Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride,” Appl. Opt. 59(12), 3720–3725 (2020).
    [Crossref]
  35. H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
    [Crossref]
  36. R. Raei, “Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions,” J. Opt. Soc. Am. B 35(2), 323–330 (2018).
    [Crossref]
  37. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18(6), 6230–6240 (2010).
    [Crossref]
  38. K. D. Xuan, L. C. Van, V. C. Long, Q. H. Dinh, L. V. Xuan, M. Trippenbach, and R. Buczynski, “Dispersion characteristics of a suspended-core optical fiber infiltrated with water,” Appl. Opt. 56(4), 1012–1019 (2017).
    [Crossref]
  39. A. Sharafali and K. Nithyanandan, “A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber,” Appl. Phys. B 126(4), 55 (2020).
    [Crossref]
  40. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [Crossref]
  41. H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34(13), 1336–1337 (1998).
    [Crossref]
  42. Y. Liu, Y. Zhao, J. Lyngsø, S. You, W. L. Wilson, H. Tu, and S. A. Boppart, “Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,” J. Lightwave Technol. 33(9), 1814–1820 (2015).
    [Crossref]
  43. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref]
  44. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [Crossref]
  45. S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
    [Crossref]
  46. I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
    [Crossref]
  47. C. Huang, M. Liao, W. Bi, X. Li, L. Wang, T. Xue, L. Zhang, D. Chen, L. Hu, Y. Fang, and W. Gao, “Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region,” Opt. Lett. 43(3), 486–489 (2018).
    [Crossref]
  48. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
    [Crossref]
  49. #x201C;Lumerical Solutions, Inc.,” https://www.lumerical.com/products/mode/ .
  50. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  51. D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
    [Crossref]
  52. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [Crossref]
  53. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
    [Crossref]
  54. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012).
  55. E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
    [Crossref]
  56. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers. I. Stochastic equations,” J. Opt. Soc. Am. B 18(2), 139–152 (2001).
    [Crossref]
  57. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17(8), 6134–6147 (2009).
    [Crossref]
  58. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref]
  59. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
    [Crossref]
  60. U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
    [Crossref]

2020 (4)

2019 (6)

V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
[Crossref]

S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
[Crossref]

A. Lemière, F. Désévédavy, P. Mathey, P. Froidevaux, G. Gadret, J.-C. Jules, C. Aquilina, B. Kibler, P. Béjot, F. Billard, O. Faucher, and F. Smektala, “Mid-infrared supercontinuum generation from 2 to 14um in arsenic- and antimony-free chalcogenide glass fibers,” J. Opt. Soc. Am. B 36(2), A183–A192 (2019).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

2018 (8)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
[Crossref]

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
[Crossref]

R. Raei, “Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions,” J. Opt. Soc. Am. B 35(2), 323–330 (2018).
[Crossref]

A. N. Ghosh, M. Klimczak, R. Buczynski, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers,” J. Opt. Soc. Am. B 35(9), 2311–2316 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
[Crossref]

C. Huang, M. Liao, W. Bi, X. Li, L. Wang, T. Xue, L. Zhang, D. Chen, L. Hu, Y. Fang, and W. Gao, “Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region,” Opt. Lett. 43(3), 486–489 (2018).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

2017 (7)

2015 (3)

2014 (3)

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (3)

2010 (1)

2009 (3)

2008 (2)

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
[Crossref]

2003 (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref]

2002 (1)

2001 (1)

1998 (2)

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
[Crossref]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

1996 (1)

1989 (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

1973 (1)

P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

a, E.

P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Adamu, A. I.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

Afshar V., S.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012).

Alamgir, I.

Alfano, R. R.

R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Allison, T. K.

Amezcua-Correa, R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

Amraoui, M. E.

Antipov, S.

Anuszkiewicz, A.

Aquilina, C.

Atkin, D. M.

Bache, M.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

Bang, O.

S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[Crossref]

Bartelt, H.

Béjot, P.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bethge, J.

Bi, W.

Billard, F.

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Boppart, S. A.

Borzycki, K.

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
[Crossref]

Bosman, G. W.

Bowen, P.

Bozolan, A.

Brown, S. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Buczynski, R.

V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak, R. Buczyński, and J. Pniewski, “Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride,” Appl. Opt. 59(12), 3720–3725 (2020).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
[Crossref]

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

A. N. Ghosh, M. Klimczak, R. Buczynski, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers,” J. Opt. Soc. Am. B 35(9), 2311–2316 (2018).
[Crossref]

K. D. Xuan, L. C. Van, V. C. Long, Q. H. Dinh, L. V. Xuan, M. Trippenbach, and R. Buczynski, “Dispersion characteristics of a suspended-core optical fiber infiltrated with water,” Appl. Opt. 56(4), 1012–1019 (2017).
[Crossref]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Res. 5(6), 710–727 (2017).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Buzniak, J.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Cao, Z.

Cassataro, M.

Chen, D.

Chen, P.

Churin, D.

Cimek, J.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref]

Coluccelli, N.

Cordeiro, C. M. B.

Corney, J. F.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Coscelli, E.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Cruz, F. C.

Cucinotta, A.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Dai, S.

de Matos, C. J. S.

Désévédavy, F.

Diddams, S. A.

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Ding, S.

Dinh, Q. H.

Dong, L.

dos Santos, E. M.

Drummond, P. D.

Dudley, J. M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

Edavalath, N. N.

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Engelsholm, D.

Engelsholm, R. D.

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
[Crossref]

Ertman, S.

Fang, Y.

Faucher, O.

Feehan, J. S.

Feurer, T.

Filipkowski, A.

Franczyk, M.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Froidevaux, P.

Frosz, M. H.

Fu, L.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gadret, G.

Galzerano, G.

Gambetta, A.

Gao, W.

Genier, E.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghosh, A. N.

Giessen, H.

Gissibl, T.

Gonzalo, I. B.

S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
[Crossref]

Griebner, U.

Gu, X.

Günendi, M. C.

Habib, M. S.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

Harasny, K.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Hartung, A.

Heidt, A.

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Res. 5(6), 710–727 (2017).
[Crossref]

Heidt, A. M.

Herrmann, J.

Hoang, V. T.

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Hooper, L. E.

Horak, P.

Hu, L.

Hu, T.

Huang, C.

Hudson, D. D.

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Husakou, A.

Jackson, S. D.

Jenkins, C. A.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Jiao, K.

Jules, J.-C.

Kaiser, P.

P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
[Crossref]

Kasztelanic, R.

Kedenburg, S.

Kibler, B.

Kieu, K.

Kimmel, M.

Kitayama, K.

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

Klimczak, M.

V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak, R. Buczyński, and J. Pniewski, “Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride,” Appl. Opt. 59(12), 3720–3725 (2020).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

A. N. Ghosh, M. Klimczak, R. Buczynski, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers,” J. Opt. Soc. Am. B 35(9), 2311–2316 (2018).
[Crossref]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Res. 5(6), 710–727 (2017).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Knight, J. C.

Kociszewski, L.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Kowligy, A.

Krok, P.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kujawa, I.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Laporta, P.

Lemière, A.

Leonov, S. O.

Li, J.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Li, L.

Li, X.

Liao, M.

Lin, C.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Lind, A.

Liu, Y.

Liu, Z.

Long, V. C.

Lopez, J. E. A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

Ludvigsen, H.

Lykke, K. R.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Lyngsø, J.

Manh, A. N.

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
[Crossref]

Marcatili, J.

P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
[Crossref]

Markos, C.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Mathey, P.

Messaddeq, Y.

Milam, D.

Miller, S. E.

P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
[Crossref]

Mitschke, F.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[Crossref]

Monro, T. M.

Moselund, P.

Moselund, P. M.

S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Mosley, P. J.

Muir, A. C.

Nader, N.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Nguyen, T. N.

Nie, Q.

Nishizawa, N.

Nithyanandan, K.

A. Sharafali and K. Nithyanandan, “A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber,” Appl. Phys. B 126(4), 55 (2020).
[Crossref]

Noack, F.

Norwood, R. A.

Novoa, D.

Novotny, S.

Papp, S. B.

Peng, T.

T. Peng, T. Xu, and X. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

Peng, X.

Petersen, C. R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peyghambarian, N.

Plotnichenko, V. G.

Pniewski, J.

Poletti, F.

Poli, F.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Price, J. H. V.

Pysz, D.

Raei, R.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rao D. S., S.

Rochette, M.

Rohwer, E. G.

Russell, P. S. J.

Schülzgen, A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

Schunemann, P. G.

Schwoerer, H.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Selleri, S.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Sharafali, A.

A. Sharafali and K. Nithyanandan, “A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber,” Appl. Phys. B 126(4), 55 (2020).
[Crossref]

Shavrin, I.

Shiryaev, V. S.

Shreenath, A. P.

Si, N.

Silfies, M.

Siwicki, B.

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Res. 5(6), 710–727 (2017).
[Crossref]

Smektala, F.

Smietana, M.

Smith, A. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Snopatin, G. E.

Sørensen, M. P.

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
[Crossref]

Sotobayashi, H.

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

Steinle, T.

Steinmann, A.

Steinmeyer, G.

Stepanov, B. S.

Stepien, R.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Stepniewski, G.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Svelto, C.

Sylvestre, T.

Takayanagi, J.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Thomas, B. K.

Tian, Y.

Timmers, H.

Travers, J.

Travers, J. C.

Trebino, R.

Trippenbach, M.

Tu, H.

Van, H. L.

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
[Crossref]

Van, L. C.

Vicentini, E.

Vieweg, M.

Wadsworth, W. J.

Wang, L.

Wang, R.

Wang, X.

Wang, Y.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Wilson, W. L.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref]

Wolinski, T.

Wolinski, T. R.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Woodward, J. T.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Xu, T.

T. Peng, T. Xu, and X. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

Xuan, K. D.

Xuan, L. V.

Xue, T.

Xue, Z.

Yang, P.

Yao, J.

Ycas, G.

You, S.

Yuan, Y.

Zhang, B.

Zhang, L.

Zhang, N.

Zhang, P.

Zhang, W. Q.

Zhao, Y.

Zhao, Z.

Zhou, B.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

S. Rao D. S., D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Sharafali and K. Nithyanandan, “A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber,” Appl. Phys. B 126(4), 55 (2020).
[Crossref]

Bell Syst. Tech. J. (1)

P. Kaiser, E. a, J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265–269 (1973).
[Crossref]

Bull. Pol. Acad. Sci.: Tech. Sci. (1)

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Electron. Lett. (2)

U. Møller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[Crossref]

H. Sotobayashi and K. Kitayama, “325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

IEEE Access (1)

T. Peng, T. Xu, and X. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

IEEE Photonics J. (1)

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion engineering of highly nonlinear chalcogenide suspended-core fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (8)

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

R. Raei, “Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions,” J. Opt. Soc. Am. B 35(2), 323–330 (2018).
[Crossref]

A. N. Ghosh, M. Klimczak, R. Buczynski, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers,” J. Opt. Soc. Am. B 35(9), 2311–2316 (2018).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
[Crossref]

A. Lemière, F. Désévédavy, P. Mathey, P. Froidevaux, G. Gadret, J.-C. Jules, C. Aquilina, B. Kibler, P. Béjot, F. Billard, O. Faucher, and F. Smektala, “Mid-infrared supercontinuum generation from 2 to 14um in arsenic- and antimony-free chalcogenide glass fibers,” J. Opt. Soc. Am. B 36(2), A183–A192 (2019).
[Crossref]

Y. Yuan, P. Yang, X. Peng, Z. Cao, S. Ding, N. Zhang, Z. Liu, P. Zhang, X. Wang, and S. Dai, “Ultrabroadband and coherent mid-infrared supercontinuum generation in all-normal dispersion Te-based chalcogenide all-solid microstructured fiber,” J. Opt. Soc. Am. B 37(2), 227–232 (2020).
[Crossref]

P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers. I. Stochastic equations,” J. Opt. Soc. Am. B 18(2), 139–152 (2001).
[Crossref]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
[Crossref]

Metrologia (1)

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277–S282 (2009).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Commun. (1)

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, and R. Kasztelanic, “Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture,” Opt. Commun. 407, 417–422 (2018).
[Crossref]

Opt. Eng. (1)

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Opt. Express (12)

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
[Crossref]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637–7644 (2017).
[Crossref]

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21(26), 32141–32150 (2013).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[Crossref]

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[Crossref]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17(8), 6134–6147 (2009).
[Crossref]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18(6), 6230–6240 (2010).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (4)

Optica (2)

Photonics Res. (1)

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photonics Res. 5(6), 710–727 (2017).
[Crossref]

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Rev. Mod. Phys. (2)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Am. (1)

R. R. Alfano, “The ultimate white light,” Sci. Am. 295(6), 86–93 (2006).
[Crossref]

Sci. Rep. (2)

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446–4449 (2019).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 1–13 (2018).
[Crossref]

Other (3)

#x201C;Lumerical Solutions, Inc.,” https://www.lumerical.com/products/mode/ .

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Numerically obtained dispersion characteristics with various dcore for (a) unfilled SCF and (b) water-filled SCF.
Fig. 2.
Fig. 2. Scanning electron microscope (SEM) images of the developed SCFs.
Fig. 3.
Fig. 3. (a) Schematic of the pump system used to infiltrate SCF with water, (b) a photograph of the fiber and metal reservoir.
Fig. 4.
Fig. 4. Schematic representation of the Mach-Zehnder interferometer system to measure dispersion characteristics of the investigated fibers.
Fig. 5.
Fig. 5. Dispersion characteristics obtained numerically and experimentally, (a) #F1, (b) #F2.
Fig. 6.
Fig. 6. Schematic of the setup used to measure the losses in the investigated fibers.
Fig. 7.
Fig. 7. The losses in the analyzed fibers as a function of the wavelength.
Fig. 8.
Fig. 8. Numerically calculated (a) effective mode area Aeff and (b) nonlinear coefficient γ for the investigated fibers.
Fig. 9.
Fig. 9. (a) Schematic of the setup used to measure SCG spectra in the investigated fibers, (b) a photograph of the all-normal supercontinuum generated in #F2, dispersed by a grating and projected onto a screen.
Fig. 10.
Fig. 10. (a) The far-field optical image of the output beam emitted from #F2, (b) radial intensity distribution of the central section of the image compared to the Gaussian function profile.
Fig. 11.
Fig. 11. (a) Experimentally obtained SCG spectra for various fiber output average powers and numerically simulated SCG spectra for the input peak power 24 kW for reference. (b) Numerically simulated pulse evolution in #F1 with input peak power 24 kW and the spectrogram of the output beam at 12 cm of propagation. (c) Coherence degree obtained from 20 individual pairs of pulses with input noises and various input peak powers, for #F1.
Fig. 12.
Fig. 12. Experimentally obtained SCG spectra for various fiber output powers and the numerically simulated SCG spectra with the input peak power 150 kW, for #F2. (b) Numerically simulated pulse evolution in #F2 with the input peak power 150 kW and the spectrogram of the output beam at 12 cm of propagation. (c) Coherence degree obtained from 20 individual pairs of the pulses with input noises and peak power 150 kW, for #F2.

Tables (1)

Tables Icon

Table 1. State-of-the-art experimental results for all-normal dispersion SCG in silica fibers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L = 10 l 1 log P 2 P 1 ,
γ = 2 π λ n 2 A eff .
z A ~ k 2 i k + 1 k ! β ~ k ( z ) δ k A δ t k + α ~ ( ω ) 2 A ~ = i γ ( 1 + ω ω 0 ω 0 ) A ~ F [ R ( T ' ) | A ( T T ' ) | 2 d T ' ]
R ( T ) = ( 1 f R ) δ ( T ) + f R h R ( T ) ,
h R ( T ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( T τ 2 ) sin ( T τ 1 ) Θ ( T ) ,
| g 12 ( 1 ) ( λ , t 1 t 2 = 0 ) | = | E 1 ( λ , t 1 ) E 2 ( λ , t 2 ) [ | E 1 ( λ , t 1 ) | 2 | E 2 ( λ , t 2 ) | 2 ] 1 / 1 2 2 | ,
L D = t 0 2 | β 2 | , L N L = 1 γ P 0 , N = L D L N L , L f i s s = L D N , L M I 16 L N L ,

Metrics