Abstract

Temperature dependent thermal and spectroscopic properties of Yb:YAlO3 (Yb:YAP) perovskite crystal at temperatures ranging from 77 to 298 K are presented. Thermal properties including specific heat, thermal expansion coefficient and thermal conductivity were investigated. Thermal shock resistance parameters were evaluated and the thermal shock resistance parameters were significantly increased from 0.68 × 106 W m-1 to 12.32 × 106 W m-1 in Yb:YAP as temperature varies from 298 to 77 K. The spectroscopic parameters, such as absorption, fluorescence, lifetime were also studied. The results of our study indicate that Yb:YAP crystal is a promising laser medium for high-power solid-state laser. The calculated cross-sections together with relevant thermal properties provide important information for the design in a new generation of cryogenically cooled near infrared laser.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Luo, J. Zhang, C. W. Xu, H. Yang, H. Lin, H. Y. Zhu, and D. Y. Tang, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 2(10), 1425–1431 (2012).
    [Crossref]
  2. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  3. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
    [Crossref]
  4. S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2,” Opt. Lett. 35(22), 3757–3759 (2010).
    [Crossref]
  5. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
    [Crossref]
  6. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref]
  7. X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
    [Crossref]
  8. X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
    [Crossref]
  9. V. E. Kisel, S. V. Kurilchik, A. S. Yasukevich, S. V. Grigoriev, S. A. Smirnova, and N. V. Kuleshov, “Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal,” Opt. Lett. 33(19), 2194–2196 (2008).
    [Crossref]
  10. X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).
  11. X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
    [Crossref]
  12. Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
    [Crossref]
  13. B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
    [Crossref]
  14. E. Marín, O. Delgado-Vasallo, and H. Valiente, “A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories,” Am. J. Phys. 71(10), 1032–1036 (2003).
    [Crossref]
  15. H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
    [Crossref]
  16. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  17. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  18. B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
    [Crossref]
  19. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  20. J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
    [Crossref]
  21. L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
    [Crossref]
  22. Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
    [Crossref]
  23. L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
    [Crossref]
  24. S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
    [Crossref]
  25. Q. N. Fang, D. Z. Lu, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nml,” Opt. Lett. 41(5), 1002–1005 (2016).
    [Crossref]
  26. X. H. Zeng, G. J. Zhao, and J. Xu, “Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystalsl,” Spectrochim. Acta, Part A 65(1), 184–186 (2006).
    [Crossref]
  27. S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
    [Crossref]
  28. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
    [Crossref]

2018 (1)

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

2017 (1)

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

2016 (1)

2015 (1)

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

2014 (1)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

2013 (2)

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (5)

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[Crossref]

S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2,” Opt. Lett. 35(22), 3757–3759 (2010).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

2008 (2)

V. E. Kisel, S. V. Kurilchik, A. S. Yasukevich, S. V. Grigoriev, S. A. Smirnova, and N. V. Kuleshov, “Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal,” Opt. Lett. 33(19), 2194–2196 (2008).
[Crossref]

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

2007 (4)

X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

2006 (1)

X. H. Zeng, G. J. Zhao, and J. Xu, “Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystalsl,” Spectrochim. Acta, Part A 65(1), 184–186 (2006).
[Crossref]

2005 (3)

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

2003 (4)

E. Marín, O. Delgado-Vasallo, and H. Valiente, “A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories,” Am. J. Phys. 71(10), 1032–1036 (2003).
[Crossref]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
[Crossref]

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Bourdet, G.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

Brown, D. C.

Cai, H. Q.

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

Camy, P.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chanteloup, J.-C.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

Chen, Y. J.

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Courjaud, A.

Dai, S. X.

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Delgado-Vasallo, O.

E. Marín, O. Delgado-Vasallo, and H. Valiente, “A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories,” Am. J. Phys. 71(10), 1032–1036 (2003).
[Crossref]

Deng, P. Z.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
[Crossref]

Di Lieto, A.

Ding, S. J.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Dou, R. Q.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Doualan, J. L.

Druon, F.

Fan, T. Y.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Fang, Q. N.

Fournier, D.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Gan, L.

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

Georges, P.

Goldner, P.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Gong, X. H.

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Grigoriev, S. V.

Guelzow, J.

He, J. L.

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

He, X. M.

X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Hein, J.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Hu, L. L.

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Huang, B. L.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Huang, H.

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

Huang, M. L.

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Huang, Y. D.

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Jambunathan, V.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Jia, X. D.

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Jia, Z. T.

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

Jiang, B. X.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

Jiang, H. H.

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Jiang, M. H.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Jiang, Z. H.

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Jie, M. Y.

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Kaluza, M. C.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Kaviany, M.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Kim, H. D.

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

Kim, H. N.

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

Kisel, V. E.

Ko, J. W.

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

Körner, J.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Kowalewski, K.

Kuleshov, N. V.

Kurilchik, S. V.

Li, H. J.

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Li, Y. B.

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

Lin, H.

Liu, W. P.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Loeser, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Lu, D. Z.

Lucianetti, A.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Luo, D. W.

Luo, J. Q.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Luo, Z. D.

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Marín, E.

E. Marín, O. Delgado-Vasallo, and H. Valiente, “A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories,” Am. J. Phys. 71(10), 1032–1036 (2003).
[Crossref]

McGaughey, A. J. H.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Melgaard, S. D.

Miller, D.

Millward, A.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Mocek, T.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Moncorgé, R.

Mottay, E.

Ni, Z.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Pang, H. Y.

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Papadopoulos, D. N.

Park, Y. J.

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

Peng, F.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Petit, J.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Rand, D.

Ricaud, S.

Ripin, D. J.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Yb:LuAG laser ceramics: a promising high power laser gain medium,” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Roger, J. P.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Schramm, U.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Seifert, R.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Seletskiy, D. V.

Sheik-Bahae, M.

Siebold, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Sikocinski, P.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Singley, J. M.

Smirnova, S. A.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sun, D. L.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Sun, G. H.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Tang, D. Y.

Tao, X. T.

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

Tian, L.

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tonelli, M.

Uher, C.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Valiente, H.

E. Marín, O. Delgado-Vasallo, and H. Valiente, “A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories,” Am. J. Phys. 71(10), 1032–1036 (2003).
[Crossref]

Viana, B.

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

Vitali, V.

Wang, B. L.

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

Wang, B. S.

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Wang, J. Y.

Q. N. Fang, D. Z. Lu, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nml,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Wang, S. X.

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

Wang, X. D.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

Wang, X. F.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Wang, Z. P.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Wei, Z. Y.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Wen, L.

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Wu, K.

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Xu, C. W.

Xu, J.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).

X. H. Zeng, G. J. Zhao, and J. Xu, “Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystalsl,” Spectrochim. Acta, Part A 65(1), 184–186 (2006).
[Crossref]

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
[Crossref]

Xu, X. D.

X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
[Crossref]

Xu, Y. Y.

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Yaghi, O.

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

Yan, C. F.

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Yang, H.

Yang, J. H.

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Yao, B.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Yasukevich, A. S.

Yin, S. T.

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Yu, H. H.

Q. N. Fang, D. Z. Lu, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nml,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref]

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zapata, L. E.

Zeng, X. H.

X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).

X. H. Zeng, G. J. Zhao, and J. Xu, “Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystalsl,” Spectrochim. Acta, Part A 65(1), 184–186 (2006).
[Crossref]

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Zhang, B. T.

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

Zhang, H. J.

Q. N. Fang, D. Z. Lu, H. H. Yu, H. J. Zhang, and J. Y. Wang, “Self-frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nml,” Opt. Lett. 41(5), 1002–1005 (2016).
[Crossref]

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zhang, J.

Zhang, Q. L.

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

Zhang, X. Y.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zhang, Y. D.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zhang, Z. G.

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

Zhao, G. J.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

X. M. He, G. J. Zhao, X. D. Xu, X. H. Zeng, and J. Xu, “Comparison of spectroscopic properties of Yb:YAP and Yb:YAG crystals,” Chin. Opt. Lett. 5(5), 295–297 (2007).

X. H. Zeng, G. J. Zhao, and J. Xu, “Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystalsl,” Spectrochim. Acta, Part A 65(1), 184–186 (2006).
[Crossref]

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

Zhao, Z. W.

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
[Crossref]

Zhu, H. Y.

Zhu, L. L.

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

Am. J. Phys. (1)

E. Marín, O. Delgado-Vasallo, and H. Valiente, “A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories,” Am. J. Phys. 71(10), 1032–1036 (2003).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B: Lasers Opt. 116(1), 75–81 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Front. Optoelectron. China (1)

B. S. Wang, H. H. Jiang, X. D. Jia, Q. L. Zhang, D. L. Sun, and S. T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal,” Front. Optoelectron. China 1(1-2), 138–141 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46(12), 1689–1695 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Int. J. Heat Mass Transfer (1)

B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, and O. Yaghi, “Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50(3-4), 405–411 (2007).
[Crossref]

J. Alloys Compd. (1)

S. J. Ding, Q. L. Zhang, F. Peng, W. P. Liu, J. Q. Luo, R. Q. Dou, G. H. Sun, X. F. Wang, and D. L. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

J. Appl. Phys. (2)

J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiments and modeling,” J. Appl. Phys. 108(12), 123108 (2010).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measuremen of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Cryst. Growth (4)

X. H. Zeng, G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at% Yb: YAlO3 and 15 at% Yb: Y3Al5O12,” J. Cryst. Growth 274(1-2), 106–112 (2005).
[Crossref]

X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Crystal growth and spectral properties of Yb3Al5O12,” J. Cryst. Growth 257(3-4), 272–275 (2003).
[Crossref]

Y. Y. Xu, X. H. Gong, Y. J. Chen, M. L. Huang, Z. D. Luo, and Y. D. Huang, “Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal,” J. Cryst. Growth 252(1-3), 241–245 (2003).
[Crossref]

Y. B. Li, Z. T. Jia, B. T. Zhang, J. L. He, and X. T. Tao, “Crystal growth and thermal properties of the laser crystal Yb3+:Gd3(AlxGa1-x)5O12,” J. Cryst. Growth 415, 20–24 (2015).
[Crossref]

J. Eur. Ceram. Soc. (1)

L. L. Zhu, Y. J. Park, L. Gan, H. N. Kim, J. W. Ko, and H. D. Kim, “Fabrication of transparent Y2O3 ceramics with record-high thermal shock resistance,” J. Eur. Ceram. Soc. 38(11), 4050–4056 (2018).
[Crossref]

J. Lumin. (1)

S. X. Dai, J. H. Yang, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses,” J. Lumin. 104(1-2), 55–63 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (2)

L. Tian, S. X. Wang, K. Wu, B. L. Wang, H. H. Yu, H. J. Zhang, H. Q. Cai, and H. Huang, “Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method,” Opt. Mater. 36(2), 521–528 (2013).
[Crossref]

X. D. Wang, X. D. Xu, Z. W. Zhao, B. X. Jiang, J. Xu, G. J. Zhao, P. Z. Deng, G. Bourdet, and J.-C. Chanteloup, “Comparison of fluorescence spectra of Yb:Y3Al5O12 and Yb:YAlO3 single crystals,” Opt. Mater. 29(12), 1662–1666 (2007).
[Crossref]

Opt. Mater. Express (2)

Spectrochim. Acta, Part A (1)

X. H. Zeng, G. J. Zhao, and J. Xu, “Effects of Yb concentration on the fluorescence spectra of Yb-doped YAlO3 single crystalsl,” Spectrochim. Acta, Part A 65(1), 184–186 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Specific heat for Yb:YAP. The curve is line connecting the data points. The accuracy of measurements is estimated to be ±1%.
Fig. 2.
Fig. 2. Thermal conductivity and thermal expansion coefficient of the Yb:YAP crystal versus temperature. The accuracy of measurements is estimated to be ±3% for thermal conductivity and ±1% for thermal expansion.
Fig. 3.
Fig. 3. Yb:YAP energy levels (a) and absorption cross sections for selected temperatures (b).
Fig. 4.
Fig. 4. Center wavelength values and FWHM bandwidth values at 960 nm as a function of temperature for Yb:YAP.
Fig. 5.
Fig. 5. Yb:YAP emission cross-section as a function of wavelength from 970 to 1100 nm, and temperatures of 77 (black), 150 (red), 200 (blue), 250 (pink) and 298 (green) K.
Fig. 6.
Fig. 6. Measured fluorescence lifetime of Yb3+ ions in YAP as a function of temperature. The inset shows the fluorescence decay curves.

Tables (4)

Tables Icon

Table 1. Thermal shock resistance parameter RT at different temperatures.

Tables Icon

Table 2. Peak absorption cross-sections σabs (10−20cm2) for main absorption lines at different temperatures.

Tables Icon

Table 3. Peak emission cross-sections σem (10−20cm2) for main emission lines at different temperatures.

Tables Icon

Table 4. Merit factor (10−22 cm· s) for main emission lines at different temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R T κ / κ α α
M = σ a b s σ e m τ f N

Metrics