Abstract

New measurements of the thermo-optic coefficients (TOCs) in ternary GeO2 and B2O3 co-doped silica core optical fibers are presented. Material additivity models are applied to the measurements to shed more light on the relative contributions by each constituent. Three of the ternary fibers studied are drawn at different temperatures, but from the same preform, providing insight into the influence of fabrication conditions. It is found that the TOC of the B2O3 constituent is somewhat less negative than previously reported and trends towards more negative values with increasing draw temperature. Two approaches are taken in determining the TOC of one of the fibers, including measuring the LP11 cutoff wavelength as a function of temperature. The latter suggests an attractive application for fiber cores with a TOC lower than the cladding: fibers whose V-number intrinsically decreases with increasing temperature. Such thermally-mode-reducing optical fibers could be of great consequence for high-energy laser applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref]
  2. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
    [Crossref]
  3. F. Stutzki, “High-speed modal decomposition of mode instabilities in high- power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [Crossref]
  4. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref]
  5. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref]
  6. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref]
  7. P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
    [Crossref]
  8. J. Ballato and P. Dragic, “Materials Development for Next Generation Optical Fiber,” Materials 7(6), 4411–4430 (2014).
    [Crossref]
  9. M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
    [Crossref]
  10. M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
    [Crossref]
  11. M. M. Bubnov, V. N. Vechkanov, and A. N. Guryanov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
    [Crossref]
  12. G. W. Tasker, W. G. French, J. R. Simpson, P. Kaiser, and H. M. Presby, “Low-loss single-mode fibers with different B2O3–SiO2 compositions,” Appl. Opt. 17(11), 1836–1842 (1978).
    [Crossref]
  13. L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt. 36(31), 8222–8226 (1997).
    [Crossref]
  14. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref]
  15. P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29(7), 967–973 (2011).
    [Crossref]
  16. A. D. Yablon, “Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  17. P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
    [Crossref]
  18. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
    [Crossref]
  19. D. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: An interlaboratory comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
    [Crossref]
  20. J. Ballato and P. D. Dragic, “Rethinking Optical Fiber: New Demands, Old Glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
    [Crossref]
  21. M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
    [Crossref]
  22. P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.
  23. D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313–322 (2015).
    [Crossref]
  24. J. Sakai and T. Kimura, “Bending loss of propagation modes in arbitrary-index profile optical fibers,” Appl. Opt. 17(10), 1499–1506 (1978).
    [Crossref]
  25. K. Okamoto, “Fundamentals of Optical Waveguides (Second Edition),” Academic Press, pp. 13–55, Ch. 2, 2006.
  26. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref]
  27. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36(7), 1540–1546 (1997).
    [Crossref]
  28. G. Ghosh, “Temperature Dispersion of Refractive Indexes in Some Silicate Fiber Glasses,” IEEE Photonics Technol. Lett. 6(3), 431–433 (1994).
    [Crossref]
  29. F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
    [Crossref]
  30. J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
    [Crossref]
  31. P.-C. Law and P. D. Dragic, “Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers,” Opt. Express 18(18), 18852–18865 (2010).
    [Crossref]
  32. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
    [Crossref]
  33. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few mode fibers,” Opt. Express 21(3), 3170–3181 (2013).
    [Crossref]
  34. A. Mafi, “Temperature distribution inside a double-cladding optical fiber laser or amplifier,” J. Opt. Soc. Am. B 37(6), 1821–1828 (2020).
    [Crossref]
  35. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
    [Crossref]
  36. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref]

2020 (1)

2018 (1)

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

2017 (2)

2016 (1)

2015 (1)

2014 (1)

J. Ballato and P. Dragic, “Materials Development for Next Generation Optical Fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

2013 (4)

2012 (3)

2011 (5)

2010 (2)

2009 (2)

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

M. M. Bubnov, V. N. Vechkanov, and A. N. Guryanov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

2008 (1)

2004 (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

1997 (2)

1994 (1)

G. Ghosh, “Temperature Dispersion of Refractive Indexes in Some Silicate Fiber Glasses,” IEEE Photonics Technol. Lett. 6(3), 431–433 (1994).
[Crossref]

1991 (1)

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
[Crossref]

1985 (2)

F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
[Crossref]

D. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: An interlaboratory comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
[Crossref]

1984 (1)

1978 (2)

Alkeskjold, T. T.

Ballato, J.

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313–322 (2015).
[Crossref]

J. Ballato and P. Dragic, “Materials Development for Next Generation Optical Fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

J. Ballato and P. D. Dragic, “Rethinking Optical Fiber: New Demands, Old Glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Bandyopadhyay, S.

Bartelt, H.

Broeng, J.

Bubnov, M. M.

M. M. Bubnov, V. N. Vechkanov, and A. N. Guryanov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Cain-Skaff, M.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Canning, J.

Cavillon, M.

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Chatigny, S.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Cook, K.

Croteau, A.

Dajani, I.

Dong, L.

Dragic, P.

P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

J. Ballato and P. Dragic, “Materials Development for Next Generation Optical Fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

Dragic, P. D.

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313–322 (2015).
[Crossref]

J. Ballato and P. D. Dragic, “Rethinking Optical Fiber: New Demands, Old Glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
[Crossref]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
[Crossref]

P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29(7), 967–973 (2011).
[Crossref]

P.-C. Law and P. D. Dragic, “Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers,” Opt. Express 18(18), 18852–18865 (2010).
[Crossref]

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Duparré, M.

Eidam, T.

Flamm, D.

Fleming, J. W.

Franzen, D.

D. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: An interlaboratory comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
[Crossref]

French, W. G.

Furtick, J.

Galeener, F. L.

F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
[Crossref]

Ghosh, G.

G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36(7), 1540–1546 (1997).
[Crossref]

G. Ghosh, “Temperature Dispersion of Refractive Indexes in Some Silicate Fiber Glasses,” IEEE Photonics Technol. Lett. 6(3), 431–433 (1994).
[Crossref]

Grobnic, D.

Guryanov, A. N.

M. M. Bubnov, V. N. Vechkanov, and A. N. Guryanov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Hansen, K. R.

Hartung, A.

Hawkins, T.

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Hawkins, T. W.

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

Jansen, F.

Jauregui, C.

Jewell, J. M.

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
[Crossref]

Jones, M.

Kaiser, P.

Kimura, T.

Kucera, C.

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Kucera, C. J.

Lægsgaard, J.

Lapointe, M.-A.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Law, P.-C.

Limpert, J.

Liu, W. F.

Liu, Y.-S.

Lorenz, A.

Mafi, A.

Maran, J.-N.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Mihailov, S. J.

Okamoto, K.

K. Okamoto, “Fundamentals of Optical Waveguides (Second Edition),” Academic Press, pp. 13–55, Ch. 2, 2006.

Otto, H.-J.

Parsons, J.

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Piché, M.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Presby, H. M.

Robin, C.

Ryan, C.

Sakai, J.

Schmidt, O.

Schreiber, T.

Schröter, S.

Schulze, C.

Simpson, J. R.

Smith, A. V.

Smith, J. J.

Stevenson, M.

Stutzki, F.

Tasker, G. W.

Tuggle, M.

Tünnermann, A.

Vechkanov, V. N.

M. M. Bubnov, V. N. Vechkanov, and A. N. Guryanov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

Ward, B.

Wirth, C.

Yablon, A. D.

A. D. Yablon, “Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
[Crossref]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

Yu, N.

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

Appl. Opt. (5)

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Ghosh, “Temperature Dispersion of Refractive Indexes in Some Silicate Fiber Glasses,” IEEE Photonics Technol. Lett. 6(3), 431–433 (1994).
[Crossref]

Inorg. Mater. (1)

M. M. Bubnov, V. N. Vechkanov, and A. N. Guryanov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45(4), 444–449 (2009).
[Crossref]

J. Am. Ceram. Soc. (2)

J. Ballato and P. D. Dragic, “Rethinking Optical Fiber: New Demands, Old Glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74(7), 1689–1691 (1991).
[Crossref]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (1)

F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (1)

J. Ballato and P. Dragic, “Materials Development for Next Generation Optical Fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

Opt. Express (8)

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref]

C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, “Mode resolved bend loss in few mode fibers,” Opt. Express 21(3), 3170–3181 (2013).
[Crossref]

P.-C. Law and P. D. Dragic, “Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers,” Opt. Express 18(18), 18852–18865 (2010).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. 8(4), 744–760 (2018).
[Crossref]

Opt. Mater. Express (3)

Optica (1)

Proc. SPIE (1)

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Other (2)

K. Okamoto, “Fundamentals of Optical Waveguides (Second Edition),” Academic Press, pp. 13–55, Ch. 2, 2006.

P. D. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper TuE81.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. RIPs and compositions for fibers a) 1, b) 2, c) 3, d) 4, and e) 5. Note that the Fiber 2 composition was not measured.
Fig. 2.
Fig. 2. Ring Laser setup for measuring the TOC.
Fig. 3.
Fig. 3. Free spectral range (FSR) versus temperature utilizing ring laser setup in Fig. 2 for Fiber 1 (beat harmonic = 1000).
Fig. 4.
Fig. 4. Setup for the LP11 cutoff wavelength measurements.
Fig. 5.
Fig. 5. Loss spectrum for Fiber 2 from 40 °C to 89 °C. The cutoff wavelength drops around 11 nm in this range.
Fig. 6.
Fig. 6. V-number versus temperature for fibers with core TOCs of 4 × 10−6 K−1 (black), 5 × 10−6 K−1 (red), and 6 × 10−6 K−1 (blue) for a fiber with pure silica cladding.
Fig. 7.
Fig. 7. Bending loss (dB/m) for the LP11 mode versus temperature for fibers with core TOCs of 4 × 10−6 K−1 (black), 5 × 10−6 K−1 (red), and 6 × 10−6 K−1 (blue), pure silica cladding, and 10 cm bending radius.
Fig. 8.
Fig. 8. Loss spectrum from 20°C to 134°C. The cutoff wavelength drops by roughly 40 nm in this range.

Tables (3)

Tables Icon

Table 1. TOCs for Fibers 1 to 5 using the setup in Fig. 2.

Tables Icon

Table 2. Required properties for the TOC calculation.

Tables Icon

Table 3. TOC for B2O3 determined from Fibers 3–5.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dFSRdT=c[n1L1+n2(T)L2(T)]2[n2(T)L2,0α2+L2(T)dn2dT]
n2(T)=n2,0+dn2dT(TT0)
L2(T)=L2,0[1+α2(TT0)]
ncore(T)dncoredTncladding(T)dncladdingdT=ΔλcNA0NA(T)λc,0ΔT
(n,dndT)=i=1Nxi(ni,dnidT)
ni=n0,i+dnidT(TT0)+dnidεdεdT(TT0)
dnidε=12n0,i3[2(p12ν(p11+p12))+(p112νp12)]
dεdT=(αcoreαcladding)
ni=n0,i+dnidT(TT0)+12n0,i3(αcoreαcladding)[2(p12ν(p11+p12))+(p112vp12)](TT0)

Metrics