Abstract

We present a straightforward method to dynamically tune the voxel size in the multiphoton polymerization technique by changing the incident laser beam diameter with a motorized beam expander. In such a manner, the beam underfilling of the objective aperture leads to an effective numerical aperture drop. Therefore, the voxel could be expanded in the lateral and the axial directions without changing the objective. Here, we present the theoretical simulation analysis of the light intensity distribution for different underfilling conditions, as well as the measured experimental results of the voxel feature sizes for high numerical aperture objective. The presented approach extends technology capabilities and could significantly increase the fabrication speed while maintaining the possibility for obtaining the highest resolution features.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  2. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
    [Crossref]
  3. T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358(6366), 1072–1074 (2017).
    [Crossref]
  4. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
    [Crossref]
  5. D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
    [Crossref]
  6. L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
    [Crossref]
  7. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Long-scale multiphoton polymerization voxel growth investigation using engineered bessel beams,” Opt. Mater. Express 9(7), 2838–2845 (2019).
    [Crossref]
  8. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525–530 (2016).
    [Crossref]
  9. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
    [Crossref]
  10. L. Yang, D. Qian, C. Xin, Z. Hu, S. Ji, D. Wu, Y. Hu, J. Li, W. Huang, and J. Chu, “Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed bessel beam,” Opt. Lett. 42(4), 743–746 (2017).
    [Crossref]
  11. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “3D holographic light shaping for advanced multiphoton polymerization,” Opt. Lett. 45(1), 85–88 (2020).
    [Crossref]
  12. E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
    [Crossref]
  13. W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
    [Crossref]
  14. L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205–15221 (2019).
    [Crossref]
  15. D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
    [Crossref]
  16. S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
    [Crossref]
  17. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [Crossref]
  18. M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27(2), 295–302 (2010).
    [Crossref]
  19. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
    [Crossref]
  20. T. Baldacchini, Three-dimensional Microfabrication using Two-photon Polymerization (William Andrew, 2015).
  21. M. Born and E. Wolf, Principles Of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction Of Light (Pergamon, 1980).
  22. T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization,” Appl. Phys. Lett. 116(3), 031101 (2020).
    [Crossref]
  23. P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
    [Crossref]

2020 (2)

2019 (2)

2018 (2)

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

2017 (2)

2016 (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
[Crossref]

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525–530 (2016).
[Crossref]

2015 (1)

2014 (2)

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

2013 (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

2012 (1)

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

2010 (1)

2009 (1)

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

2007 (2)

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
[Crossref]

2004 (1)

Balciunas, E.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Baldacchini, T.

Baltriukiene, D.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles Of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction Of Light (Pergamon, 1980).

Bukelskiene, V.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Chen, Q.-D.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Cheng, Y.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Chichkov, B. N.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

Chu, J.

Chu, W.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

Danilevicius, P.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Dehaeck, S.

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Farsari, M.

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “3D holographic light shaping for advanced multiphoton polymerization,” Opt. Lett. 45(1), 85–88 (2020).
[Crossref]

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Long-scale multiphoton polymerization voxel growth investigation using engineered bessel beams,” Opt. Mater. Express 9(7), 2838–2845 (2019).
[Crossref]

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525–530 (2016).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Frenzel, T.

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358(6366), 1072–1074 (2017).
[Crossref]

Gadonas, R.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Gailevicius, D.

Garliauskas, M.

Gedvilas, M.

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
[Crossref]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Haverich, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
[Crossref]

Hu, Y.

Hu, Z.

Huang, W.

Ji, S.

Jonušauskas, L.

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205–15221 (2019).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

Juodkazis, S.

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205–15221 (2019).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Kadic, M.

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358(6366), 1072–1074 (2017).
[Crossref]

Kelemen, L.

Kraniauskas, A.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Lambert, P.

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Li, J.

Li, W.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Malinauskas, M.

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205–15221 (2019).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Manousidaki, M.

Midorikawa, K.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

Nasse, M. J.

Ngezahayo, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

Niu, L.-G.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Ormos, P.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

Paipulas, D.

T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization,” Appl. Phys. Lett. 116(3), 031101 (2020).
[Crossref]

Papazoglou, D. G.

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Purlys, V.

T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization,” Appl. Phys. Lett. 116(3), 031101 (2020).
[Crossref]

Qi, J.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

Qian, D.

Raciukaitis, G.

Rekštyte, S.

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205–15221 (2019).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Scheid, B.

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Schlie, S.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

Širmenis, R.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Sirvydis, V.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Stankevicius, E.

Sugioka, K.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

Sun, H.-B.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Tan, Y.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
[Crossref]

Tickunas, T.

T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization,” Appl. Phys. Lett. 116(3), 031101 (2020).
[Crossref]

Tzortzakis, S.

Urey, H.

Valkai, S.

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Wang, J.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Wang, J.-N.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Wang, P.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

Wang, R.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Wegener, M.

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358(6366), 1072–1074 (2017).
[Crossref]

Woehl, J. C.

Wolf, E.

M. Born and E. Wolf, Principles Of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction Of Light (Pergamon, 1980).

Wu, D.

L. Yang, D. Qian, C. Xin, Z. Hu, S. Ji, D. Wu, Y. Hu, J. Li, W. Huang, and J. Chu, “Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed bessel beam,” Opt. Lett. 42(4), 743–746 (2017).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Wu, S.-Z.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

Xia, H.

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Xin, C.

Xu, J.

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

Yang, L.

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Addit. Manuf. (1)

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Adv. Mater. Technol. (1)

W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, and Y. Cheng, “Centimeter-height 3D printing with femtosecond laser two-photon polymerization,” Adv. Mater. Technol. 3(5), 1700396 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization,” Appl. Phys. Lett. 116(3), 031101 (2020).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Tissue Eng. Regener. Med. (1)

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regener. Med. 1(6), 443–449 (2007).
[Crossref]

Lab Chip (1)

D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang, H. Xia, and H.-B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009).
[Crossref]

Laser Photon. Rev. (1)

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photon. Rev. 8(3), 458–467 (2014).
[Crossref]

Mater. Sci. (1)

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18(2), 145–149 (2012).
[Crossref]

Nat. Photon. (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photon. 10(8), 554–560 (2016).
[Crossref]

Opt. Eng. (1)

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (1)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Science (1)

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358(6366), 1072–1074 (2017).
[Crossref]

Other (2)

T. Baldacchini, Three-dimensional Microfabrication using Two-photon Polymerization (William Andrew, 2015).

M. Born and E. Wolf, Principles Of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction Of Light (Pergamon, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematics of direct laser writing optical setup with a motorized telescope (1-8x expansion ratio) and high NA objective. M1-M4 – reflective mirrors; L1-L5 – lenses.
Fig. 2.
Fig. 2. (a) Schematic illustration of laser beam propagation through stratified media. Calculated PSF by vectorial theory for 0.95 NA objective with $\lambda$=515 nm laser wavelength with different filling factors T for the input aperture of the objective. Parameters: (b)$\,$T $\gg$ 1, (c)$\,$T = 1, (d)$\,$T = 0.5, (e)$\,$T = 0.33, (f)$\,$T = 0.25, (g)$\,$T = 0.2.
Fig. 3.
Fig. 3. Top- and side-views of SEM images of suspended fibers between supporting pillars for NA$_{\textrm {eff}}$ of (a) 1.4 and (b) 0.32. The set of individual lines shows voxel growth dynamics with an increasing laser power for (a) 1.4 NA$_{\textrm {eff}}$, near the (left) polymerization (0.09-0.14 mW) and close to (right) damage threshold (0.16-0.21 mW). While for (b) 0.32 NA$_{\textrm {eff}}$, in the ranges of (left) 0.17-0.25 mW and (right) 0.43-0.53 mW, respectively.
Fig. 4.
Fig. 4. Comparison of modeled PSF size by using scalar and vectorial theories for 1.4 NA objective. Bullet points represent experimental measurements of polymerization threshold under different filling factor conditions.
Fig. 5.
Fig. 5. Measured (a) lateral and (b) axial voxel dimensions fabricated with a single objective by varying its NA$_{\textrm {eff}}$ and laser exposure dose over the entire fabrication window.
Fig. 6.
Fig. 6. SEM image of the woodpile structure having two different voxel segments: upper and lower parts were done with NA$_{\textrm {eff}}$=0.54, while the middle section with NA$_{\textrm {eff}}$=1.23. Whole structure was fabricated using the same microscope objective as well as constant translation velocity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω 0 = λ z 0 π = λ f π ω ;
2 z 0 = 2 n π ω 0 2 λ = 2 n λ π ( f ω ) 2 ,

Metrics