Abstract

While magnesium holds great potential as hydrogen storage material, interest has recently shifted to its use in optical switching applications. The hydrogen-induced phase transition from metallic magnesium to dielectric magnesium hydride is a promising candidate for switchable and active plasmonic systems. Most studies in the past have been performed on magnesium thin films and were directed to the investigation and optimization of hydrogen storage rather than to the optical properties. While these studies found a strong influence of the material morphology and crystallinity on the bulk and thin film properties, no in-depth study has revealed rules and recipes to tune and control the nanoscale morphology. Here, we demonstrate that the nanocrystallinity, that is, the crystallite size and morphology on the nanoscale, as well as the surface roughness of magnesium thin films in an optically switchable geometry, can be tuned and adjusted by a comprehensive set of evaporation parameters. The required film geometries, optical properties, and the applications at hand determine the deposition parameters and need to be chosen accordingly. Further, we find that the surface roughness changes drastically upon hydrogenation. Our results have an immediate impact on the understanding as well as the fabrication of optically active devices where magnesium is being used.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng., B 181(1), 77–85 (2014).
    [Crossref]
  2. K. Appusamy, M. Swartz, S. Blair, A. Nahata, J. S. Shumaker-Parry, and S. Guruswamy, “Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films,” Opt. Mater. Express 6(10), 3180 (2016).
    [Crossref]
  3. F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
    [Crossref]
  4. S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
    [Crossref]
  5. N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
    [Crossref]
  6. P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
    [Crossref]
  7. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
    [Crossref]
  8. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  9. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  10. B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
    [Crossref]
  11. A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
    [Crossref]
  12. T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
    [Crossref]
  13. M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
    [Crossref]
  14. X. Duan and N. Liu, “Magnesium for dynamic nanoplasmonics,” Acc. Chem. Res. 52(7), 1979–1989 (2019).
    [Crossref]
  15. J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
    [Crossref]
  16. R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
    [Crossref]
  17. P. Van Der Sluis, M. Ouwerkerk, and P. A. Duine, “Optical switches based on magnesium lanthanide alloy hydrides,” Appl. Phys. Lett. 70(25), 3356–3358 (1997).
    [Crossref]
  18. S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
    [Crossref]
  19. K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
    [Crossref]
  20. A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
    [Crossref]
  21. M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
    [Crossref]
  22. J. S. Biggins, S. Yazdi, and E. Ringe, “Magnesium nanoparticle plasmonics,” Nano Lett. 18(6), 3752–3758 (2018).
    [Crossref]
  23. X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 1–9 (2017).
    [Crossref]
  24. X. Duan and N. Liu, “Scanning plasmonic color display,” ACS Nano 12(8), 8817–8823 (2018).
    [Crossref]
  25. J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
    [Crossref]
  26. P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
    [Crossref]
  27. P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
    [Crossref]
  28. X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
    [Crossref]
  29. F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
    [Crossref]
  30. H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
    [Crossref]
  31. H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).
  32. J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).
  33. M. Hamm and A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH2,” Int. J. Hydrogen Energy 42(35), 22530–22537 (2017).
    [Crossref]
  34. J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
    [Crossref]
  35. X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
    [Crossref]
  36. R. Griessen and R. Feenstra, “Volume changes during hydrogen absorption in metals,” J. Phys. F: Met. Phys. 15(4), 1013–1019 (1985).
    [Crossref]
  37. A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
    [Crossref]
  38. A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
    [Crossref]
  39. A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
    [Crossref]
  40. A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
    [Crossref]
  41. P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
    [Crossref]
  42. H. T. Uchida, R. Kirchheim, and A. Pundt, “Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films,” Scr. Mater. 64(10), 935–937 (2011).
    [Crossref]
  43. R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
    [Crossref]
  44. N. G. Semaltianos, “Thermally evaporated aluminium thin films,” Appl. Surf. Sci. 183(3-4), 223–229 (2001).
    [Crossref]
  45. K. Bordo and H. G. Rubahn, “Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors,” Mater. Sci. 18(4), 313–317 (2012).
    [Crossref]
  46. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
    [Crossref]
  47. A. N. Pargellis, “Evaporating and sputtering: Substrate heating dependence on deposition rate,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7(1), 27–30 (1989).
  48. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref]
  49. H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
    [Crossref]

2020 (1)

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

2019 (3)

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

X. Duan and N. Liu, “Magnesium for dynamic nanoplasmonics,” Acc. Chem. Res. 52(7), 1979–1989 (2019).
[Crossref]

2018 (9)

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

X. Duan and N. Liu, “Scanning plasmonic color display,” ACS Nano 12(8), 8817–8823 (2018).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

J. S. Biggins, S. Yazdi, and E. Ringe, “Magnesium nanoparticle plasmonics,” Nano Lett. 18(6), 3752–3758 (2018).
[Crossref]

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

2017 (6)

M. Hamm and A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH2,” Int. J. Hydrogen Energy 42(35), 22530–22537 (2017).
[Crossref]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 1–9 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
[Crossref]

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

2016 (4)

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

K. Appusamy, M. Swartz, S. Blair, A. Nahata, J. S. Shumaker-Parry, and S. Guruswamy, “Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films,” Opt. Mater. Express 6(10), 3180 (2016).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

2015 (3)

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

2014 (3)

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng., B 181(1), 77–85 (2014).
[Crossref]

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

2012 (2)

K. Bordo and H. G. Rubahn, “Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors,” Mater. Sci. 18(4), 313–317 (2012).
[Crossref]

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

2011 (2)

H. T. Uchida, R. Kirchheim, and A. Pundt, “Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films,” Scr. Mater. 64(10), 935–937 (2011).
[Crossref]

H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).

2010 (1)

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

2009 (2)

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

2008 (2)

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

2007 (3)

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

2003 (1)

J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
[Crossref]

2002 (1)

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

2001 (1)

N. G. Semaltianos, “Thermally evaporated aluminium thin films,” Appl. Surf. Sci. 183(3-4), 223–229 (2001).
[Crossref]

1997 (1)

P. Van Der Sluis, M. Ouwerkerk, and P. A. Duine, “Optical switches based on magnesium lanthanide alloy hydrides,” Appl. Phys. Lett. 70(25), 3356–3358 (1997).
[Crossref]

1989 (1)

A. N. Pargellis, “Evaporating and sputtering: Substrate heating dependence on deposition rate,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7(1), 27–30 (1989).

1985 (2)

P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
[Crossref]

R. Griessen and R. Feenstra, “Volume changes during hydrogen absorption in metals,” J. Phys. F: Met. Phys. 15(4), 1013–1019 (1985).
[Crossref]

1975 (1)

R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
[Crossref]

Alford, T. L.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

Allee, D. R.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

Angell, D. K.

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

Appusamy, K.

Ares, J. R.

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

Arwin, H.

J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
[Crossref]

Ashley, E. J.

R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
[Crossref]

Atmakidis, T.

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

Bagheri, S.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

Bakker, M.

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

Baldi, A.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

Bao, S.

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

Bell, A.

H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).

Berrier, A.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Biggins, J. S.

J. S. Biggins, S. Yazdi, and E. Ringe, “Magnesium nanoparticle plasmonics,” Nano Lett. 18(6), 3752–3758 (2018).
[Crossref]

Blair, S.

Bordo, K.

K. Bordo and H. G. Rubahn, “Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors,” Mater. Sci. 18(4), 313–317 (2012).
[Crossref]

Borgschulte, A.

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

Borsa, D. M.

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

Broedersz, C. P.

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

Burge, D. K.

R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
[Crossref]

Dam, B.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

Díaz-Chao, P.

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

Dionne, J. A.

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

Duan, X.

X. Duan and N. Liu, “Magnesium for dynamic nanoplasmonics,” Acc. Chem. Res. 52(7), 1979–1989 (2019).
[Crossref]

X. Duan and N. Liu, “Scanning plasmonic color display,” ACS Nano 12(8), 8817–8823 (2018).
[Crossref]

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 1–9 (2017).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

Duine, P. A.

P. Van Der Sluis, M. Ouwerkerk, and P. A. Duine, “Optical switches based on magnesium lanthanide alloy hydrides,” Appl. Phys. Lett. 70(25), 3356–3358 (1997).
[Crossref]

Fay, M. W.

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Feenstra, R.

R. Griessen and R. Feenstra, “Volume changes during hydrogen absorption in metals,” J. Phys. F: Met. Phys. 15(4), 1013–1019 (1985).
[Crossref]

Fernández, J. F.

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

Ferrer, I. J.

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

Gaudart, L.

P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
[Crossref]

Gholipour, B.

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Giebels, I. A. M. E.

J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
[Crossref]

Giessen, H.

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

Gonzalez-Silveira, M.

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

Gremaud, R.

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

Griessen, R.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
[Crossref]

R. Griessen and R. Feenstra, “Volume changes during hydrogen absorption in metals,” J. Phys. F: Met. Phys. 15(4), 1013–1019 (1985).
[Crossref]

Guruswamy, S.

Hamm, M.

M. Hamm and A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH2,” Int. J. Hydrogen Energy 42(35), 22530–22537 (2017).
[Crossref]

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

Hanss, J.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Harder, R. J.

A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
[Crossref]

Hayee, F.

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

Hentschel, M.

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

Hirscher, M.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Hjörvarsson, B.

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Isidorsson, J.

J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
[Crossref]

Jasperson, S. N.

R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Jin, Z.

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Kamin, S.

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 1–9 (2017).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

Kanan, M. W.

A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
[Crossref]

Karst, J.

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

Karvounis, A.

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

Kim, H. C.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

Kirchheim, R.

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

H. T. Uchida, R. Kirchheim, and A. Pundt, “Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films,” Scr. Mater. 64(10), 935–937 (2011).
[Crossref]

Kooi, B. J.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Kreibig, U.

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Krishnan, G.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Kürschner, J.

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

Leardini, F.

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

Leen Koh, A.

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

Lewin, M.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Li, J.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Li, P.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Li, X.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Linnenbank, H.

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

Liu, N.

X. Duan and N. Liu, “Magnesium for dynamic nanoplasmonics,” Acc. Chem. Res. 52(7), 1979–1989 (2019).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

X. Duan and N. Liu, “Scanning plasmonic color display,” ACS Nano 12(8), 8817–8823 (2018).
[Crossref]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 1–9 (2017).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

Macdonald, K. F.

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

Maß, T. W. W.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Mauron, P.

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Merker, M.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Michel, A. K. U.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Mooij, L.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

Mörz, F.

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

Nahata, A.

Narayan, T. C.

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

Neubrech, F.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

O’Handley, R. C.

R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
[Crossref]

Okada, M.

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

Ouwerkerk, M.

P. Van Der Sluis, M. Ouwerkerk, and P. A. Duine, “Optical switches based on magnesium lanthanide alloy hydrides,” Appl. Phys. Lett. 70(25), 3356–3358 (1997).
[Crossref]

Palmisano, V.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

Pálsson, G. K.

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Pargellis, A. N.

A. N. Pargellis, “Evaporating and sputtering: Substrate heating dependence on deposition rate,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7(1), 27–30 (1989).

Pasturel, M.

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

Petrakian, J. P.

P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
[Crossref]

Piccinotti, D.

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

Pivak, Y.

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

Pundt, A.

M. Hamm and A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH2,” Int. J. Hydrogen Energy 42(35), 22530–22537 (2017).
[Crossref]

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).

H. T. Uchida, R. Kirchheim, and A. Pundt, “Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films,” Scr. Mater. 64(10), 935–937 (2011).
[Crossref]

Qiu, C. W.

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Rector, J. H.

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

Renucci, P.

P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
[Crossref]

Richter, G.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

Ringe, E.

J. S. Biggins, S. Yazdi, and E. Ringe, “Magnesium nanoparticle plasmonics,” Nano Lett. 18(6), 3752–3758 (2018).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Roux, D.

P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
[Crossref]

Rubahn, H. G.

K. Bordo and H. G. Rubahn, “Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors,” Mater. Sci. 18(4), 313–317 (2012).
[Crossref]

Sánchez, C.

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

Schäferling, M.

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

Schreuders, H.

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

Schutz, G.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Schütz, G.

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Semaltianos, N. G.

N. G. Semaltianos, “Thermally evaporated aluminium thin films,” Appl. Surf. Sci. 183(3-4), 223–229 (2001).
[Crossref]

Shumaker-Parry, J. S.

Siegel, M.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

Sinclair, R.

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

Slaman, M.

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

Steinle, T.

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Sterl, F.

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

Strohfeldt, N.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

Swartz, M.

Sytwu, K.

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

Tajima, K.

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Thompson, C. V.

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Tittl, A.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

Ubl, M.

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

Uchida, H. T.

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).

H. T. Uchida, R. Kirchheim, and A. Pundt, “Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films,” Scr. Mater. 64(10), 935–937 (2011).
[Crossref]

Ulvestad, A.

A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
[Crossref]

Vadai, M.

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

Van Der Sluis, P.

P. Van Der Sluis, M. Ouwerkerk, and P. A. Duine, “Optical switches based on magnesium lanthanide alloy hydrides,” Appl. Phys. Lett. 70(25), 3356–3358 (1997).
[Crossref]

van Helden, W. G. J.

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

Wagner, S.

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).

Walker, G. S.

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Walter, R.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

Wang, C. M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Weiss, T.

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

Wijngaarden, R. J.

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Yamada, Y.

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

Yang, X.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Yau, A.

A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
[Crossref]

Yazdi, S.

J. S. Biggins, S. Yazdi, and E. Ringe, “Magnesium nanoparticle plasmonics,” Nano Lett. 18(6), 3752–3758 (2018).
[Crossref]

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Yoshimura, K.

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

Yu, P.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Zhang, S.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

Zheludev, N. I.

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zheng, G.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Zondag, H. A.

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

Acc. Chem. Res. (1)

X. Duan and N. Liu, “Magnesium for dynamic nanoplasmonics,” Acc. Chem. Res. 52(7), 1979–1989 (2019).
[Crossref]

ACS Nano (3)

A. Yau, R. J. Harder, M. W. Kanan, and A. Ulvestad, “Imaging the hydrogen absorption dynamics of individual grains in polycrystalline palladium thin films in 3D,” ACS Nano 11(11), 10945–10954 (2017).
[Crossref]

X. Duan and N. Liu, “Scanning plasmonic color display,” ACS Nano 12(8), 8817–8823 (2018).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of switchable singular beams with dynamic metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

ACS Photonics (2)

S. Bagheri, N. Strohfeldt, M. Ubl, A. Berrier, M. Merker, G. Richter, M. Siegel, and H. Giessen, “Niobium as alternative material for refractory and active plasmonics,” ACS Photonics 5(8), 3298–3304 (2018).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Acta Mater. (1)

H. T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, and A. Pundt, “Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited,” Acta Mater. 85, 279–289 (2015).
[Crossref]

Adv. Mater. (1)

R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, “Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials,” Adv. Mater. 19(19), 2813–2817 (2007).
[Crossref]

Annu. Rev. Mater. Res. (1)

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

S. Bao, K. Tajima, Y. Yamada, M. Okada, and K. Yoshimura, “Color-neutral switchable mirrors based on magnesium-titanium thin films,” Appl. Phys. A: Mater. Sci. Process. 87(4), 621–624 (2007).
[Crossref]

Appl. Phys. Lett. (4)

K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, “Flexible all-solid-state switchable mirror on plastic sheet,” Appl. Phys. Lett. 92(4), 041912 (2008).
[Crossref]

P. Van Der Sluis, M. Ouwerkerk, and P. A. Duine, “Optical switches based on magnesium lanthanide alloy hydrides,” Appl. Phys. Lett. 70(25), 3356–3358 (1997).
[Crossref]

A. Baldi, V. Palmisano, M. Gonzalez-Silveira, Y. Pivak, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Quasifree Mg-H thin films,” Appl. Phys. Lett. 95(7), 071903 (2009).
[Crossref]

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81(22), 4287–4289 (2002).
[Crossref]

Appl. Surf. Sci. (1)

N. G. Semaltianos, “Thermally evaporated aluminium thin films,” Appl. Surf. Sci. 183(3-4), 223–229 (2001).
[Crossref]

Int. J. Hydrogen Energy (3)

M. Hamm and A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH2,” Int. J. Hydrogen Energy 42(35), 22530–22537 (2017).
[Crossref]

J. R. Ares, F. Leardini, P. Díaz-Chao, I. J. Ferrer, J. F. Fernández, and C. Sánchez, “Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques,” Int. J. Hydrogen Energy 39(6), 2587–2596 (2014).
[Crossref]

A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, “Mg-Ti-H thin films as switchable solar absorbers,” Int. J. Hydrogen Energy 33(12), 3188–3192 (2008).
[Crossref]

J. Phys. F: Met. Phys. (1)

R. Griessen and R. Feenstra, “Volume changes during hydrogen absorption in metals,” J. Phys. F: Met. Phys. 15(4), 1013–1019 (1985).
[Crossref]

J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. (1)

A. N. Pargellis, “Evaporating and sputtering: Substrate heating dependence on deposition rate,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7(1), 27–30 (1989).

Light: Sci. Appl. (1)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Mater. Sci. (1)

K. Bordo and H. G. Rubahn, “Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors,” Mater. Sci. 18(4), 313–317 (2012).
[Crossref]

Mater. Sci. Eng., B (1)

K. Appusamy, S. Blair, A. Nahata, and S. Guruswamy, “Low-loss magnesium films for plasmonics,” Mater. Sci. Eng., B 181(1), 77–85 (2014).
[Crossref]

Nano Lett. (7)

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, and H. Giessen, “Yttrium hydride nanoantennas for active plasmonics,” Nano Lett. 14(3), 1140–1147 (2014).
[Crossref]

P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C. W. Qiu, M. Hirscher, and N. Liu, “Dynamic Janus metasurfaces in the visible spectral region,” Nano Lett. 18(7), 4584–4589 (2018).
[Crossref]

X. Duan, S. Kamin, F. Sterl, H. Giessen, and N. Liu, “Hydrogen-regulated chiral nanoplasmonics,” Nano Lett. 16(2), 1462–1466 (2016).
[Crossref]

F. Sterl, H. Linnenbank, T. Steinle, F. Mörz, N. Strohfeldt, and H. Giessen, “Nanoscale hydrogenography on single magnesium nanoparticles,” Nano Lett. 18(7), 4293–4302 (2018).
[Crossref]

J. S. Biggins, S. Yazdi, and E. Ringe, “Magnesium nanoparticle plasmonics,” Nano Lett. 18(6), 3752–3758 (2018).
[Crossref]

B. Gholipour, D. Piccinotti, A. Karvounis, K. F. Macdonald, and N. I. Zheludev, “Reconfigurable ultraviolet and high-energy visible dielectric metamaterials,” Nano Lett. 19(3), 1643–1648 (2019).
[Crossref]

Nat. Commun. (3)

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 1–9 (2017).
[Crossref]

T. C. Narayan, F. Hayee, A. Baldi, A. Leen Koh, R. Sinclair, and J. A. Dionne, “Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles,” Nat. Commun. 8(1), 14020–8 (2017).
[Crossref]

M. Vadai, D. K. Angell, F. Hayee, K. Sytwu, and J. A. Dionne, “In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles,” Nat. Commun. 9(1), 4658 (2018).
[Crossref]

Nat. Mater. (1)

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A. K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref]

Nat. Photonics (2)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Opt. Mater. Express (1)

Phot. Sci. Annu. Reports (1)

H. T. Uchida, S. Wagner, A. Bell, and A. Pundt, “In-situ XRD measurement of nanocrystalline magnesium films during hydrogen loading,” Phot. Sci. Annu. Reports , 2, 2–3 (2011).

Phys. Rev. B - Condens. Matter Mater. Phys. (1)

J. Isidorsson, I. A. M. E. Giebels, H. Arwin, and R. Griessen, “Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry,” Phys. Rev. B - Condens. Matter Mater. Phys. 68(11), 115112 (2003).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

A. Baldi, G. K. Pálsson, M. Gonzalez-Silveira, H. Schreuders, M. Slaman, J. H. Rector, G. Krishnan, B. J. Kooi, G. S. Walker, M. W. Fay, B. Hjörvarsson, R. J. Wijngaarden, B. Dam, and R. Griessen, “Mg/Ti multilayers: Structural and hydrogen absorption properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 81(22), 224203 (2010).
[Crossref]

Phys. Rev. Lett. (2)

A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, “Destabilization of the Mg-H system through elastic constraints,” Phys. Rev. Lett. 102(22), 226102 (2009).
[Crossref]

A. Baldi, L. Mooij, V. Palmisano, H. Schreuders, G. Krishnan, B. J. Kooi, B. Dam, and R. Griessen, “Elastic versus alloying effects in Mg-based hydride films,” Phys. Rev. Lett. 121(25), 255503 (2018).
[Crossref]

Phys. Rev. Mater. (1)

X. Duan, R. Griessen, R. J. Wijngaarden, S. Kamin, and N. Liu, “Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium,” Phys. Rev. Mater. 2(8), 085802 (2018).
[Crossref]

Sci. Adv. (2)

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, and H. Giessen, “Watching in-situ the hydrogen diffusion dynamics in magnesium on the nanoscale,” Sci. Adv. 6, eaaz0566 (2020).

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Scr. Mater. (1)

H. T. Uchida, R. Kirchheim, and A. Pundt, “Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films,” Scr. Mater. 64(10), 935–937 (2011).
[Crossref]

Sens. Actuators, B (1)

M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides,” Sens. Actuators, B 123(1), 538–545 (2007).
[Crossref]

Surf. Sci. (1)

R. C. O’Handley, D. K. Burge, S. N. Jasperson, and E. J. Ashley, “Residual gas and the optical properties of silver films,” Surf. Sci. 50(2), 407–433 (1975).
[Crossref]

Thin Solid Films (1)

P. Renucci, L. Gaudart, J. P. Petrakian, and D. Roux, “Electron transport properties of magnesium thin films,” Thin Solid Films 130(1-2), 75–86 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Comparison of atomic force microscopy (AFM) topography of 40 nm magnesium thin films without (left column) and with a 5 nm titanium (Ti) sub-layer (right column). The Ti layer acts as a wetting layer for the Mg films. The top images show a normal view onto the surface. The scale bar is valid for both images. The bottom images show a tilted 3D view onto the surface. The substrate is atomically flat silicon. The field of view is always 1 × 1 µm2. The thermal evaporation rates for Mg and Ti are ERMg = 6 ± 0.4 Å/s and ERTi = 1 ± 0.2 Å/s, respectively.
Fig. 2.
Fig. 2. SEM micrographs of optically switchable Mg thin film surfaces showing the change of the nanocrystallinity and morphology for a varying Mg thickness d at constant evaporation rate (ERMg = 7.5 ± 0.5 Å/s). (a) depicts a surface of a 26 nm film with only very small crystallites forming a mostly uniform film. The size of the nanocrystallites increases for layer thickness d of (b) 50 nm, (c) 100 nm, (d) 150 nm, and (e) 200 nm. The Mg films are thermally evaporated on a silicon substrate with a 10 nm Pd- and 5 nm Ti-sub-layer. The scale bar is valid for all shown SEM micrographs.
Fig. 3.
Fig. 3. Tilted 3D view (1 × 1 µm2) of optically switchable Mg thin films measured with an AFM. (a) 50 nm and (b) 200 nm Mg thickness, both evaporated with same evaporation rate ERMg = 7.5 ± 0.5 Å/s. The sub-layers are the same for both samples (5 nm Ti and 10 nm Pd). One can clearly see the increase of nanocrystallite size and surface roughness for a thicker Mg film.
Fig. 4.
Fig. 4. SEM micrographs of optically switchable Mg thin films showing the change of the nanocrystallinity and morphology for different evaporation rates ER at constant layer thickness (dMg = 200 nm). The evaporation rate is changed in the following steps: (a) 1 ± 0.5 Å/s, (b) 2 ± 0.5 Å/s, (c) 4 ± 0.5 Å/s, (d) 6 ± 0.5 Å/s, (e) 7.5 ± 0.5 Å/s. There appears to be no significant difference in the nanocrystallinity and morphology for different evaporation rates. The Mg films are thermally evaporated on a silicon substrate with a 10 nm Pd- and 5 nm Ti-sub-layer. The scale bar is valid for all shown SEM images.
Fig. 5.
Fig. 5. RMS (surface roughness) in dependence of two different thermal evaporation parameters: (a) varying layer thickness d of the Mg layer at constant ERMg = 7.5 ± 0.5 Å/s, (b) varying evaporation rate ER at constant dMg = 200 nm. Two AFM scans for three samples each with same parameters were used for each thickness and evaporation rate, meaning an average of six measurements per thickness value d and evaporation rate value ER. The vertical error bars represent the standard deviation from averaging the individual RMS values. The horizontal error bar in (b) represents the fluctuation of the evaporation rate during evaporation, which is usually on the order of ΔER = ± 0.5 Å/s. The Mg films are thermally evaporated on a silicon substrate with a 10 nm Pd- and 5 nm Ti-sub-layer.
Fig. 6.
Fig. 6. SEM micrographs of the surface of 200 nm optically switchable Mg thin films deposited at different substrate temperatures (a) Tsub = RT, (b) Tsub = 90°C, and (c,d) Tsub = 120°C. (d) shows a zoom-out view of (c). The Mg films are thermally evaporated (ERMg = 7.5 ± 0.5 Å/s) on a silicon substrate with a 10 nm Pd- and 5 nm Ti-sub-layer. The heating from RT to 90°C causes an increase in nanocrystallite size. When heating to 120°C, holes and gaps are arising leading to a thicker film. While we measure almost exactly the expected thickness of 215 nm (10 nm Pd + 5 nm Ti + 200 nm Mg) for the films in (a) (dmeasured = 211 nm) and (b) (dmeasured = 216 nm), the film heated to Tsub = 120°C in (c,d) possesses a film thickness of dmeasured = 312 nm.
Fig. 7.
Fig. 7. Comparison of the nanocrystallinity of optically switchable Mg thin films evaporated on different substrates with 10 nm Pd and 5 nm Ti sub-layer. (a) 50 nm Mg on silicon, (b) 200 nm Mg on silicon, (c) 50 nm Mg on gold grid, (d) 200 nm Mg on gold grid. The films on the gold grids are free-standing and allow for further in-situ investigations of the surface roughness upon hydrogen exposure from below. The scale bar is valid for all SEM images.
Fig. 8.
Fig. 8. Development of the surface roughness RMS of an optically switchable Mg thin film upon hydrogenation (2% H2 in N2). Metallic Mg changes to dielectric MgH2 causing a up to 30% volume expansion and an increase of the RMS. (a) and (b) show the measurement on two samples which have been fabricated with identical parameters within the experimental tolerances (Mg evaporation parameters: ERMg = 4.5 ± 0.5 Å/s, dMg = 50 nm, Ti and Pd sub-layers). They show a slightly different behavior of the surface roughness for longer hydrogen exposure. For both, during the first 5 min and 4 min (orange marked areas), respectively, the surface roughness changes very fast with the highest slope.
Fig. 9.
Fig. 9. Optical performance of Mg thin films with different morphology. The left and right column show the performance of a 50 nm and 200 nm Mg film with Pd and Ti sublayers, respectively. Both films are thermally evaporated on a gold grid to produce free-standing films where hydrogen exposure is possible from below while the reflectance of only the Mg film can be measured from above. (a) and (b) display the respective spectrally resolved normalized reflectance of the pristine Mg films (blue curves) and MgH2 films after saturation (red curve) of hydrogenation (5% H2 in N2). The curves are normalized to the maximum of the pristine film. (c,d) and (e,f) show the optical microscope images (taken in reflection) of the respective free-standing Mg film (including surrounding grid) in the pristine state (blue frame) and after hydrogenation (red frame). Scale bar is 20 µm. (g) and (h) depict the respective time-dependency of the normalized reflectance at λ = 700 nm during hydrogenation with 5% H2 in N2 (red shaded area) and 20% O2 in N2 (blue shaded area).
Fig. 10.
Fig. 10. Low magnification SEM micrographs of the same magnesium (Mg) thin films shown in Fig. 2 in the main manuscript. The films consist of film-crystallites. Additionally, we find surface-crystallites with mostly the whole typical hexagonal shape of the Mg crystal lattice visible. We vary the Mg thickness d at constant evaporation rate (ERMg = 7.5 ± 0.5 Å/s). (a) depicts a surface of a 26 nm films with only very small crystallites forming a mostly uniform film. The size of the nanocrystallites increases for layer thickness d of (b) 50 nm, (c) 100 nm, (d) 150 nm, and (e) 200 nm. The Mg films are thermally evaporated on a silicon substrate with a 10 nm Pd- and 5 nm Ti-sub-layer. The scale bar is valid for all shown SEM micrographs.
Fig. 11.
Fig. 11. Sample holder for substrates which can be heated to allow for changing the substrate temperature Tsub during material deposition via thermal evaporation. The sample is placed above the temperature probe to allow for a small discrepancy between measured and actual substrate temperature. The holder is made from copper to obtain good thermal conductivity. Thermal isolation is achieved by adding TECAPEEK.

Metrics