Abstract

Tellurium (Te) semiconductor core optical fibers with silicate glass cladding were drawn by the molten core method. The as-drawn precursor fiber has a large core diameter of about 123 µm, which was found to be polycrystalline. What is more, a Bridgman-type fiber postprocessing technique was constructed and used for the first time to anneal the polycrystalline Te semiconductor core optical fibers. The Te core in precursor fiber was melted and recrystallized to single crystal Te with c-axis orientation parallel to fiber axis, which was confirmed by X-ray diffraction, single crystal X-ray diffraction, micro-Raman spectra, and transmission electron microscope measurement results. Enhanced conductivities were observed in single crystal Te semiconductor core optical fibers under illuminated and stress states, respectively. This work demonstrates that the Bridgman-type fiber postprocessing technique could be an effective way to fabricate single crystal semiconductor core optical fibers with large core diameters (∼ 100 µm) and long lengths (a few centimeters).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Crystalline selenium core optical fibers with low optical loss

Shuai Peng, Guowu Tang, Kaimin Huang, Qi Qian, Dongdan Chen, Qinyuan Zhang, and Zhongmin Yang
Opt. Mater. Express 7(6) 1804-1812 (2017)

CO2 laser annealing of Ge core optical fibers with different laser power

Ziwen Zhao, Yujizhe Mao, Li Ren, Jianbo Zhang, Na Chen, and Tingyun Wang
Opt. Mater. Express 9(3) 1333-1347 (2019)

CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients

Wei Wu, Mustafa Balci, Seunghan Song, Chunxin Liu, Michael Fokine, Fredrik Laurell, Thomas Hawkins, John Ballato, and Ursula J. Gibson
Opt. Mater. Express 10(4) 926-936 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
    [Crossref]
  2. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  3. A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
    [Crossref]
  4. G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
    [Crossref]
  5. S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
    [Crossref]
  6. T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
    [Crossref]
  7. X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
    [Crossref]
  8. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
    [Crossref]
  9. C. L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsvier, 2007).
  10. S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
    [Crossref]
  11. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [Crossref]
  12. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref]
  13. G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
    [Crossref]
  14. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
    [Crossref]
  15. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
    [Crossref]
  16. E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U. J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3(5), 651–657 (2013).
    [Crossref]
  17. X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
    [Crossref]
  18. H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
    [Crossref]
  19. S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
    [Crossref]
  20. N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
    [Crossref]
  21. N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
    [Crossref]
  22. N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
    [Crossref]
  23. S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
    [Crossref]
  24. M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
    [Crossref]
  25. D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
    [Crossref]
  26. Z. Zhao, Y. Mao, L. Ren, J. Zhang, N. Chen, and T. Wang, “CO2 laser annealing of Ge core optical fibers with different laser power,” Opt. Mater. Express 9(3), 1333–1347 (2019).
    [Crossref]
  27. G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
    [Crossref]
  28. M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
    [Crossref]
  29. G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
    [Crossref]
  30. J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication- a route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
    [Crossref]
  31. C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
    [Crossref]
  32. S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).
  33. B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
    [Crossref]
  34. W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
    [Crossref]
  35. P. T. Chiang, “Tellurium single-crystal growth by zone-melting and Bridgman methods,” Can. J. Phys. 44(5), 1195–1197 (1966).
    [Crossref]
  36. G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
    [Crossref]
  37. O. N. Egorova, S. L. Semjonov, V. V. Velmiskin, Y. P. Yatsenko, S. E. Sverchkov, B. I. Galagan, B. I. Denker, and E. M. Dianov, “Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser,” Opt. Express 22(7), 7632–7637 (2014).
    [Crossref]
  38. T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
    [Crossref]
  39. M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
    [Crossref]
  40. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
    [Crossref]
  41. B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
    [Crossref]
  42. Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
    [Crossref]
  43. R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 1383–1395 (1976).
    [Crossref]
  44. R. Geick, E. F. Steigmeier, and H. Auderset, “Raman effect in selenium-tellurium mixed crystals,” Phys. Status Solidi B 54(2), 623–630 (1972).
    [Crossref]
  45. A. S. Pine and G. Dresselhaus, “Raman spectra and lattice dynamics of tellurium,” Phys. Rev. B 4(2), 356–371 (1971).
    [Crossref]
  46. D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
    [Crossref]
  47. C. H. Cartwright, “An abnormal electrical conductivity in powdered tellurium,” Phys. Rev. 49(6), 443–448 (1936).
    [Crossref]
  48. A. Nussbaum, “Electrical properties of pure tellurium and tellurium-selenium alloys,” Phys. Rev. 94(2), 337–342 (1954).
    [Crossref]
  49. V. A. Vis, “Photoconductivity in single-crystal tellurium,” J. Appl. Phys. 35(2), 360–364 (1964).
    [Crossref]
  50. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
    [Crossref]
  51. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
    [Crossref]
  52. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
    [Crossref]

2020 (1)

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

2019 (3)

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

Z. Zhao, Y. Mao, L. Ren, J. Zhang, N. Chen, and T. Wang, “CO2 laser annealing of Ge core optical fibers with different laser power,” Opt. Mater. Express 9(3), 1333–1347 (2019).
[Crossref]

2018 (4)

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication- a route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

2017 (6)

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
[Crossref]

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

2016 (5)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

2015 (3)

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

2014 (3)

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

O. N. Egorova, S. L. Semjonov, V. V. Velmiskin, Y. P. Yatsenko, S. E. Sverchkov, B. I. Galagan, B. I. Denker, and E. M. Dianov, “Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser,” Opt. Express 22(7), 7632–7637 (2014).
[Crossref]

2013 (3)

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U. J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3(5), 651–657 (2013).
[Crossref]

2012 (2)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref]

2011 (2)

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
[Crossref]

2010 (2)

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (2)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

2005 (1)

G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
[Crossref]

2003 (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

2002 (1)

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

2001 (1)

B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
[Crossref]

1982 (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

1976 (1)

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 1383–1395 (1976).
[Crossref]

1972 (1)

R. Geick, E. F. Steigmeier, and H. Auderset, “Raman effect in selenium-tellurium mixed crystals,” Phys. Status Solidi B 54(2), 623–630 (1972).
[Crossref]

1971 (1)

A. S. Pine and G. Dresselhaus, “Raman spectra and lattice dynamics of tellurium,” Phys. Rev. B 4(2), 356–371 (1971).
[Crossref]

1966 (1)

P. T. Chiang, “Tellurium single-crystal growth by zone-melting and Bridgman methods,” Can. J. Phys. 44(5), 1195–1197 (1966).
[Crossref]

1964 (1)

V. A. Vis, “Photoconductivity in single-crystal tellurium,” J. Appl. Phys. 35(2), 360–364 (1964).
[Crossref]

1954 (1)

A. Nussbaum, “Electrical properties of pure tellurium and tellurium-selenium alloys,” Phys. Rev. 94(2), 337–342 (1954).
[Crossref]

1953 (1)

W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
[Crossref]

1936 (1)

C. H. Cartwright, “An abnormal electrical conductivity in powdered tellurium,” Phys. Rev. 49(6), 443–448 (1936).
[Crossref]

Abouraddy, A. F.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Arnold, J.

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

Auderset, H.

R. Geick, E. F. Steigmeier, and H. Auderset, “Raman effect in selenium-tellurium mixed crystals,” Phys. Status Solidi B 54(2), 623–630 (1972).
[Crossref]

Badding, J. V.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Ballato, J.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication- a route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
[Crossref]

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Bayindir, M.

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

Bohnert, K.

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

Breiby, D. W.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Bulgakova, N. M.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Buset, O. T.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Cartwright, C. H.

C. H. Cartwright, “An abnormal electrical conductivity in powdered tellurium,” Phys. Rev. 49(6), 443–448 (1936).
[Crossref]

Chalmers, B.

W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
[Crossref]

Chaudhuri, S.

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

Chen, D.

S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
[Crossref]

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

Chen, H.

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref]

Chen, M.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Chen, N.

Chen, X.

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

Cheng, H. Y.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Chiang, P. T.

P. T. Chiang, “Tellurium single-crystal growth by zone-melting and Bridgman methods,” Can. J. Phys. 44(5), 1195–1197 (1966).
[Crossref]

Cho, K.

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Claeys, C. L.

C. L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsvier, 2007).

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Coucheron, D. A.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Covian, C.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Dabo, I.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Danto, S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Daw, M.

Day, T. D.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Deng, D. S.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Denker, B. I.

Dianov, E. M.

Dibbs, A. N.

Dresselhaus, G.

A. S. Pine and G. Dresselhaus, “Raman spectra and lattice dynamics of tellurium,” Phys. Rev. B 4(2), 356–371 (1971).
[Crossref]

Egorova, O. N.

Ellison, M.

Eraker, A. J.

Fan, J.

Fan, S.

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

Fang, Z.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Faugas, B.

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

Fink, Y.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Fokine, M.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Foy, P.

Franz, Y.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Galagan, B. I.

Gates, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
[Crossref]

Geick, R.

R. Geick, E. F. Steigmeier, and H. Auderset, “Raman effect in selenium-tellurium mixed crystals,” Phys. Status Solidi B 54(2), 623–630 (1972).
[Crossref]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Gibson, U. J.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U. J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3(5), 651–657 (2013).
[Crossref]

Gopalan, V.

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Gupta, N.

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

Hawkins, T.

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17(10), 8029–8035 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref]

Hawkins, T. W.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Healy, N.

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Helliwell, K.

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 1383–1395 (1976).
[Crossref]

Hon, N. K.

Hou, C.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Huang, J.

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

Huang, K.

S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
[Crossref]

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

Hur, K.

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Jackson, K. A.

W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
[Crossref]

Jalali, B.

Jeon, S.

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Ji, X.

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

Jia, X.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Joannopoulos, J. D.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

Jones, M.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Kalli, K.

Kim, D.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Kim, F.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Kim, M.

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Kim, Y. S.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Kokuoz, B.

Krishnamurthi, M.

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Kucera, C.

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

Laurell, F.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

Lee, E.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Lee, S.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Lee, T. I.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Lee, Y.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Lei, S.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Li, G.

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

Li, K.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Liu, J.

Liu, W.

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

Liu, X.

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

Lønsethagen, K.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

Lucovsky, G.

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 1383–1395 (1976).
[Crossref]

Ma, S.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Ma, X.

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Mailis, S.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Mao, Y.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Martin, R. M.

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 1383–1395 (1976).
[Crossref]

Mayers, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
[Crossref]

McMillen, C.

Mo, M.

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

Mohney, S. E.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

Moon, G.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Morris, S.

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
[Crossref]

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

Myoung, J. M.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Nguyen-Dang, T.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

Nordstrand, E. F.

Nussbaum, A.

A. Nussbaum, “Electrical properties of pure tellurium and tellurium-selenium alloys,” Phys. Rev. 94(2), 337–342 (1954).
[Crossref]

Orf, N. D.

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Österberg, A. V.

Page, A.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

Page, R. L.

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

Pan, L.

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

Patil, N.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Peacock, A. C.

S. Song, N. Healy, S. K. Svendsen, A. V. Österberg, C. Covian, J. Liu, A. C. Peacock, J. Ballato, F. Laurell, M. Fokine, and U. J. Gibson, “Crystalline GaSb-core optical fibers with room-temperature photoluminescence,” Opt. Mater. Express 8(6), 1435–1440 (2018).
[Crossref]

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication- a route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Peng, S.

Peng, Y.

G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
[Crossref]

Pine, A. S.

A. S. Pine and G. Dresselhaus, “Raman spectra and lattice dynamics of tellurium,” Phys. Rev. B 4(2), 356–371 (1971).
[Crossref]

Podila, R.

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

Poilvert, N.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Poole, K. F.

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

Powers, D. R.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Qian, G.

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Qian, Q.

S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
[Crossref]

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

Qian, Y.

G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
[Crossref]

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

Qu, Y.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

Rao, A. M.

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Ren, L.

Reppert, J.

Rice, R.

Rice, R. R.

Rutter, J. W.

W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
[Crossref]

Sazio, P. J. A.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Schmidt, M. A.

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Semjonov, S. L.

Shan, X.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Sharma, S. R.

Shen, L.

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

Shi, Z.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Shori, R.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

Simoen, E.

C. L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsvier, 2007).

Singh, R.

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

Sohn, S.

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Song, S.

Sordo, F.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

Sorin, F.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Sparks, J. R.

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Stafsudd, O.

Steigmeier, E. F.

R. Geick, E. F. Steigmeier, and H. Auderset, “Raman effect in selenium-tellurium mixed crystals,” Phys. Status Solidi B 54(2), 623–630 (1972).
[Crossref]

Stolen, R.

Sun, M.

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

Sun, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Sung, Y.

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Svendsen, S. K.

Sverchkov, S. E.

Tan, S.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Tang, G.

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

Theodosiou, A.

Tiller, W. A.

W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
[Crossref]

Velmiskin, V. V.

Vis, V. A.

V. A. Vis, “Photoconductivity in single-crystal tellurium,” J. Appl. Phys. 35(2), 360–364 (1964).
[Crossref]

Wang, H.

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

Wang, L.

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

Wang, T.

Wang, Z.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

Wei, L.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Wei, X.

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

Wen, X.

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Wu, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xi, G.

G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
[Crossref]

Xia, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
[Crossref]

Xiong, Y.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Yan, H.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yan, W.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

Yang, L.

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

Yang, P.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yang, Z.

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

S. Peng, G. Tang, K. Huang, Q. Qian, D. Chen, Q. Zhang, and Z. Yang, “Crystalline selenium core optical fibers with low optical loss,” Opt. Mater. Express 7(6), 1804–1812 (2017).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, Q. Qian, X. Wen, X. Chen, W. Liu, M. Sun, and Z. Yang, “Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers,” Opt. Express 23(18), 23624–23633 (2015).
[Crossref]

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

Yatsenko, Y. P.

Yazgan-Kokuoz, B.

Yin, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
[Crossref]

Yu, S.

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

Yu, W.

G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
[Crossref]

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

Zeng, J.

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Zhang, J.

Z. Zhao, Y. Mao, L. Ren, J. Zhang, N. Chen, and T. Wang, “CO2 laser annealing of Ge core optical fibers with different laser power,” Opt. Mater. Express 9(3), 1333–1347 (2019).
[Crossref]

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Zhang, N.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Zhang, Q.

Zhang, S.

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

Zhang, T.

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Zhao, X.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Zhao, Z.

Zhou, G.

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

Zhu, L.

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express 1(6), 1141–1149 (2011).
[Crossref]

ACS Photonics (2)

S. Chaudhuri, J. R. Sparks, X. Ji, M. Krishnamurthi, L. Shen, N. Healy, A. C. Peacock, V. Gopalan, and J. V. Badding, “Crystalline silicon optical fibers with low optical loss,” ACS Photonics 3(3), 378–384 (2016).
[Crossref]

X. Ji, S. Lei, S. Yu, H. Y. Cheng, W. Liu, N. Poilvert, Y. Xiong, I. Dabo, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal silicon optical fiber by direct laser crystallization,” ACS Photonics 4(1), 85–92 (2017).
[Crossref]

Acta Metall. (1)

W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1(4), 428–437 (1953).
[Crossref]

Adv. Mater. (7)

T. I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, and Z. Wang, “High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly,” Adv. Mater. 25(21), 2920–2925 (2013).
[Crossref]

M. Kim, X. Ma, K. Cho, S. Jeon, K. Hur, and Y. Sung, “A generalized crystallographic description of all tellurium nanostructures,” Adv. Mater. 30(6), 1702701 (2018).
[Crossref]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

B. Mayers, B. Gates, Y. Yin, and Y. Xia, “Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process,” Adv. Mater. 13(18), 1380–1384 (2001).
[Crossref]

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 31(1), 1802348 (2019).
[Crossref]

M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, and Y. Qian, “Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes,” Adv. Mater. 14(22), 1658–1662 (2002).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18(7), 845–849 (2006).
[Crossref]

Adv. Opt. Mater. (3)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

X. Ji, R. L. Page, S. Chaudhuri, W. Liu, S. Yu, S. E. Mohney, J. V. Badding, and V. Gopalan, “Single-crystal germanium core optoelectronic fibers,” Adv. Opt. Mater. 5(1), 1600592 (2017).
[Crossref]

APL Photonics (1)

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication- a route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

Appl. Phys. Lett. (1)

D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010).
[Crossref]

Bull. Am. Ceram. Soc. (1)

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

Can. J. Phys. (1)

P. T. Chiang, “Tellurium single-crystal growth by zone-melting and Bridgman methods,” Can. J. Phys. 44(5), 1195–1197 (1966).
[Crossref]

Cryst. Growth Des. (1)

G. Xi, Y. Peng, W. Yu, and Y. Qian, “Synthesis, characterization, and growth mechanism of tellurium nanotubes,” Cryst. Growth Des. 5(1), 325–328 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Chen, S. Fan, G. Li, M. A. Schmidt, and N. Healy, “Single cyrstal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization,” IEEE Photonics Technol. Lett. 32(2), 81–84 (2020).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theory Tech. 30(4), 472–511 (1982).
[Crossref]

J. Alloys Compd. (2)

G. Tang, Q. Qian, X. Wen, G. Zhou, X. Chen, M. Sun, D. Chen, and Z. Yang, “Phosphate glass-clad tellurium semiconductor core optical fibers,” J. Alloys Compd. 633, 1–4 (2015).
[Crossref]

G. Tang, W. Liu, Q. Qian, G. Qian, M. Sun, L. Yang, K. Huang, D. Chen, and Z. Yang, “Antimony selenide core fibers,” J. Alloys Compd. 694, 497–501 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Faugas, T. Hawkins, C. Kucera, K. Bohnert, and J. Ballato, “Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers,” J. Am. Ceram. Soc. 101(9), 4340–4349 (2018).
[Crossref]

J. Appl. Phys. (2)

V. A. Vis, “Photoconductivity in single-crystal tellurium,” J. Appl. Phys. 35(2), 360–364 (1964).
[Crossref]

N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, “Annealing of silicon optical fibers,” J. Appl. Phys. 110(9), 093107 (2011).
[Crossref]

J. Mater. Chem. (1)

Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, and X. Wei, “Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature,” J. Mater. Chem. 20(12), 2457–2463 (2010).
[Crossref]

J. Non-Cryst. Solids (1)

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Laser Photonics Rev. (1)

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photonics Rev. 8(1), 53–72 (2014).
[Crossref]

Nano Energy (1)

T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, and L. Wei, “High-performance, flexible, and ultralong crystalline thermoelectric fibers,” Nano Energy 41, 35−42 (2017).
[Crossref]

Nat. Commun. (3)

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Nat. Mater. (1)

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref]

Nat. Photonics (1)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (6)

Phys. Rev. (2)

C. H. Cartwright, “An abnormal electrical conductivity in powdered tellurium,” Phys. Rev. 49(6), 443–448 (1936).
[Crossref]

A. Nussbaum, “Electrical properties of pure tellurium and tellurium-selenium alloys,” Phys. Rev. 94(2), 337–342 (1954).
[Crossref]

Phys. Rev. B (2)

A. S. Pine and G. Dresselhaus, “Raman spectra and lattice dynamics of tellurium,” Phys. Rev. B 4(2), 356–371 (1971).
[Crossref]

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 1383–1395 (1976).
[Crossref]

Phys. Status Solidi B (1)

R. Geick, E. F. Steigmeier, and H. Auderset, “Raman effect in selenium-tellurium mixed crystals,” Phys. Status Solidi B 54(2), 623–630 (1972).
[Crossref]

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Sensors (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref]

Other (1)

C. L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsvier, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the Bridgman-type fiber postprocessing method.
Fig. 2.
Fig. 2. (a) Electron micrograph image of the as-drawn Te core fiber. (b)-(d) EPMA images of the marked area in (a).
Fig. 3.
Fig. 3. XRD spectra of the as-drawn and annealed Te core. The inset of the Fig. 3 shows the crystal structure of trigonal Te.
Fig. 4.
Fig. 4. Raman spectra of Te powder and Te core.
Fig. 5.
Fig. 5. (a) TEM images of the annealed Te semiconductor core optical fibers. (b)-(d) EDX mappings on (a), yellow, red, and cyan denote Si, O, and Te, respectively. (e)-(h) The HR-TEM images of the annealed Te core at the four labeled locations in (a). The insets in (e)-(h) show the SAED patterns of the annealed Te core at the four labeled locations in (a).
Fig. 6.
Fig. 6. Current-voltage characteristics of Te semiconductor core optical fibers in the dark and under illumination. The inset of the Fig. 6 shows the schematic of current-voltage characteristic test under illuminated state.
Fig. 7.
Fig. 7. Current-voltage characteristics of the annealed Te core fibers without and under stress states. The inset of the Fig. 7 shows the test schematic.

Metrics