Abstract

The direct epitaxial growth of GaAs on Si suffers from their nature of lattice mismatch, thermal mismatch and polarity difference induced anti-phase domains (APDs). Here, we report the high quality and thin GaAs film grown on {113}-faceted Ge/Si (001) hollow substrate by in-situ hybrid molecular beam epitaxy. By directly growth of Ge on U-shape patterned Si (001), a strain-relaxed high-quality Ge sawtooth hollow structure with {113} facets was obtained. With an additional 400 nm GaAs deposition, an APD-free surface with a root-mean-square roughness of merely 0.67 nm is obtained on such Ge {113} /Si (001) substrate. The lattice mismatch dislocation between Ge and Si is found to terminate mostly at the sidewalls of the hollow structures. The {113}-faceted Ge surface is acting as an equivalent to the miscut substrate, which annihilates the APDs at the GaAs/Ge interface. High-resolution X-ray diffraction characterization reveals that the hollow structures can effectively reduce the thermal strain, leading to a crack-free GaAs film up to 7 µm. Five-layer InAs/GaAs quantum dots (QDs) on such virtual GaAs/Ge {113} /Si (001) substrate without any dislocation filter layers exhibits almost the same photoluminescence (PL) intensity as that on the GaAs substrate, providing a promising method for integrating III-V QD lasers with silicon photonic platform.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)

Jinkwan Kwoen, Bongyong Jang, Joohang Lee, Takeo Kageyama, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 26(9) 11568-11576 (2018)

Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001)

Jinkwan Kwoen, Bongyong Jang, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 27(3) 2681-2688 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  2. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref]
  3. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
    [Crossref]
  4. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref]
  5. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref]
  7. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
    [Crossref]
  8. Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
    [Crossref]
  9. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref]
  10. H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  11. J. Kwoen, B. Y. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
    [Crossref]
  12. B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).
  13. S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy,” Appl. Phys. Lett. 78(3), 288–290 (2001).
    [Crossref]
  14. R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
    [Crossref]
  15. Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
    [Crossref]
  16. Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
    [Crossref]
  17. A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
    [Crossref]
  18. J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
    [Crossref]
  19. W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
    [Crossref]
  20. B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “2019 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
    [Crossref]
  21. Y. B. Bolkhovityanov and L. V. Sokolov, “Ge-on-Si films obtained by epitaxial growing: edge dislocations and their participation in plastic relaxation,” Semicond. Sci. Technol. 27(4), 043001 (2012).
    [Crossref]
  22. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
    [Crossref]
  23. M. Yako, Y. Ishikawa, and K. Wada, “Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification,” J. Appl. Phys. 123(18), 185304 (2018).
    [Crossref]
  24. R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
    [Crossref]
  25. W. Q. Wei, J. H. Wang, Y. Gong, J. A. Shi, L. Gu, H. X. Xu, T. Wang, and J. J. Zhang, “C/L-band emission of InAs QDs monolithically grown on Ge substrate,” Opt. Mater. Express 7(8), 2955–2961 (2017).
    [Crossref]
  26. X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
    [Crossref]
  27. V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
    [Crossref]
  28. D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
    [Crossref]
  29. A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
    [Crossref]

2019 (1)

2018 (4)

M. Yako, Y. Ishikawa, and K. Wada, “Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification,” J. Appl. Phys. 123(18), 185304 (2018).
[Crossref]

X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
[Crossref]

J. Kwoen, B. Y. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

2017 (2)

W. Q. Wei, J. H. Wang, Y. Gong, J. A. Shi, L. Gu, H. X. Xu, T. Wang, and J. J. Zhang, “C/L-band emission of InAs QDs monolithically grown on Ge substrate,” Opt. Mater. Express 7(8), 2955–2961 (2017).
[Crossref]

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

2016 (3)

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

2015 (4)

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

2014 (1)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

2013 (1)

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

2012 (3)

Y. B. Bolkhovityanov and L. V. Sokolov, “Ge-on-Si films obtained by epitaxial growing: edge dislocations and their participation in plastic relaxation,” Semicond. Sci. Technol. 27(4), 043001 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

2011 (1)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

2010 (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

2006 (1)

2005 (2)

2003 (1)

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

2001 (1)

S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy,” Appl. Phys. Lett. 78(3), 288–290 (2001).
[Crossref]

2000 (1)

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

1987 (1)

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
[Crossref]

Alcotte, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Alduino, A.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Antoniadis, D. A.

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

Arakawa, Y.

Baets, R.

Bao, S. Y.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Bao, X. Y.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bar, R.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Baron, T.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Basak, J.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Bassani, F.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Basset, F. B.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Beatty, R.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Beckx, S.

Benamara, M.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Bergamaschini, R.

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Bessette, J. T.

Bienstman, P.

Block, B. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Bogaerts, W.

Bogumilowicz, Y.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bolkhovityanov, Y. B.

Y. B. Bolkhovityanov and L. V. Sokolov, “Ge-on-Si films obtained by epitaxial growing: edge dislocations and their participation in plastic relaxation,” Semicond. Sci. Technol. 27(4), 043001 (2012).
[Crossref]

Bonera, E.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Bovington, J.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Bowers, J. E.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Cai, Y.

Camacho-Aguilera, R. E.

Capellini, G.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Chen, S. M.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Cipro, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Cohen, O.

Cong, H.

Cortinovis, A.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Currie, M. T.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

David, S.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Dosunmu, O.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Ducroquet, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Dumon, P.

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Falub, C. V.

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Fang, A. W.

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Feng, Q.

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “2019 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Fitzgerald, E. A.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Geng, Y.

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

Gong, Y.

Gossard, A. C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Groenert, M.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

Grutzmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gu, L.

Guo, W.

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

Harder, N. P.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Hartmann, J. M.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Haubensack, F.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Heck, J.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Hogg, R.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Horwitz, L.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Hsieh, I. W.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Isa, F.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Isella, G.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Ishikawa, Y.

M. Yako, Y. Ishikawa, and K. Wada, “Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification,” J. Appl. Phys. 123(18), 185304 (2018).
[Crossref]

Jang, B. Y.

Jiang, Q.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref]

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Kageyama, T.

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Kim, B.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Kimerling, L. C.

Kitada, T.

X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
[Crossref]

Koch, B.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Kohen, D.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Krause, C.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Kumagai, N.

X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
[Crossref]

Kwoen, J.

Langdo, T. A.

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

Lau, K. M.

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

Lazar, D.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Lee, C. S.

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

Lee, J.

Lee, J. W.

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
[Crossref]

Lee, K. E. K.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Lee, K. H.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Leitz, C. W.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

Lester, L. F.

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

Li, Q.

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Liao, L.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Lipson, M.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Litski, S.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Liu, A. S.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, H. F.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Liu, H. Y.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Lo, W. Z.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Lochtefeld, A.

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

Lu, X. M.

X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Luyssaert, B.

Maidaniuk, Y.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Martin, M.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Marzegalli, A.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Matyi, R. J.

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
[Crossref]

Mazur, Y. I.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Meyler, B.

S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy,” Appl. Phys. Lett. 78(3), 288–290 (2001).
[Crossref]

Michel, J.

Miglio, L.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Minami, Y.

X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
[Crossref]

Moeyaert, J.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Morse, M.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Muller, E.

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Na, N.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Niedermann, P.

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Oberbeck, L.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Onno, A.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Paniccia, M.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Paniccia, M. J.

Park, H.

Patel, N.

Pezzoli, F.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Pin, J. B.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Pitera, A. J.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

Pozzi, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Preble, S. F.

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Rochat, N.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Romagnoli, M.

Rong, H. S.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Saba, R.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Salamo, G. J.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Salaun, A.

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Salzman, J.

S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy,” Appl. Phys. Lett. 78(3), 288–290 (2001).
[Crossref]

Sanchez, E.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

Scaccabarozzi, A.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Schmidt, B.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Schroeder, T.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Seeds, A.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Shi, B.

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

Shi, J. A.

Shichijo, H.

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Sokolov, L. V.

Y. B. Bolkhovityanov and L. V. Sokolov, “Ge-on-Si films obtained by epitaxial growing: edge dislocations and their participation in plastic relaxation,” Semicond. Sci. Technol. 27(4), 043001 (2012).
[Crossref]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Sullivan, K.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Sysak, M.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Taillaert, D.

Tan, C. S.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

Tang, M. C.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Tsai, H. L.

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
[Crossref]

Tutu, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

von Kanel, H.

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Wada, K.

M. Yako, Y. Ishikawa, and K. Wada, “Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification,” J. Appl. Phys. 123(18), 185304 (2018).
[Crossref]

Wan, Y. T.

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

Wang, H. L.

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Wang, J. H.

Wang, T.

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “2019 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

W. Q. Wei, J. H. Wang, Y. Gong, J. A. Shi, L. Gu, H. X. Xu, T. Wang, and J. J. Zhang, “C/L-band emission of InAs QDs monolithically grown on Ge substrate,” Opt. Mater. Express 7(8), 2955–2961 (2017).
[Crossref]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wang, Z. H.

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

Watanabe, K.

Wei, W. Q.

Wiaux, V.

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wu, J.

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Xu, H. X.

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

W. Q. Wei, J. H. Wang, Y. Gong, J. A. Shi, L. Gu, H. X. Xu, T. Wang, and J. J. Zhang, “C/L-band emission of InAs QDs monolithically grown on Ge substrate,” Opt. Mater. Express 7(8), 2955–2961 (2017).
[Crossref]

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Yako, M.

M. Yako, Y. Ishikawa, and K. Wada, “Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification,” J. Appl. Phys. 123(18), 185304 (2018).
[Crossref]

Yang, V. K.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

Yao, R. Z.

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

Ye, Z.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Yin, T.

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Yoon, S. F.

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

Zamir, S.

S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy,” Appl. Phys. Lett. 78(3), 288–290 (2001).
[Crossref]

Zaumseil, P.

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Zhang, B.

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “2019 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Zhang, J. J.

Zhang, J. Y.

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “2019 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

APL Mater. (1)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapor deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Appl. Phys. Express (1)

X. M. Lu, N. Kumagai, Y. Minami, and T. Kitada, “Sublattice reversal in GaAs/Ge/GaAs heterostructures grown on (113)B GaAs substrates,” Appl. Phys. Express 11(1), 015501 (2018).
[Crossref]

Appl. Phys. Lett. (7)

Y. T. Wan, Q. Li, Y. Geng, B. Shi, and K. M. Lau, “InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 mu m band,” Appl. Phys. Lett. 107(8), 081106 (2015).
[Crossref]

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of Gaas-Layers Grown by Molecular-Beam Epitaxy on Si Substrates,” Appl. Phys. Lett. 50(1), 31–33 (1987).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76(25), 3700–3702 (2000).
[Crossref]

Z. H. Wang, R. Z. Yao, S. F. Preble, C. S. Lee, L. F. Lester, and W. Guo, “High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding,” Appl. Phys. Lett. 107(26), 261107 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 mu m quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy,” Appl. Phys. Lett. 78(3), 288–290 (2001).
[Crossref]

IEEE J. Solid-State Circuits (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010).
[Crossref]

J. Appl. Phys. (2)

M. Yako, Y. Ishikawa, and K. Wada, “Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification,” J. Appl. Phys. 123(18), 185304 (2018).
[Crossref]

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys. 93(7), 3859–3865 (2003).
[Crossref]

J. Cryst. Growth (2)

D. Kohen, S. Y. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD - Application to a 200 mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X. Y. Bao, and E. Sanchez, “Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates,” J. Cryst. Growth 453, 180–187 (2016).
[Crossref]

J. Lightwave Technol. (1)

Mater. Des. (1)

A. Marzegalli, A. Cortinovis, F. B. Basset, E. Bonera, F. Pezzoli, A. Scaccabarozzi, F. Isa, G. Isella, P. Zaumseil, G. Capellini, T. Schroeder, and L. Miglio, “Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001),” Mater. Des. 116, 144–151 (2017).
[Crossref]

Nat. Photonics (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Nature (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Proc. SPIE (1)

A. Onno, J. Wu, Q. Jiang, S. M. Chen, M. C. Tang, Y. Maidaniuk, M. Benamara, Y. I. Mazur, G. J. Salamo, N. P. Harder, L. Oberbeck, and H. Y. Liu, “1.7eV Al0.2Ga0.8As solar cells epitaxially grown on silicon by SSMBE using a superlattice and dislocation filters,” Proc. SPIE 9743, 974310 (2016).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

Semicond. Sci. Technol. (1)

Y. B. Bolkhovityanov and L. V. Sokolov, “Ge-on-Si films obtained by epitaxial growing: edge dislocations and their participation in plastic relaxation,” Semicond. Sci. Technol. 27(4), 043001 (2012).
[Crossref]

Surf. Sci. Rep. (1)

R. Bergamaschini, F. Isa, C. V. Falub, P. Niedermann, E. Muller, G. Isella, H. von Kanel, and L. Miglio, “Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays,” Surf. Sci. Rep. 68(3-4), 390–417 (2013).
[Crossref]

Other (1)

B. Koch, A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Z. Lo, J. Basak, H. F. Liu, H. S. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. S. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. W. Hsieh, J. Heck, R. Beatty, J. Bovington, and M. Paniccia, “A 4 × 12.5 Gb/s CWDM Si photonics link using integrated hybrid silicon lasers,” Conf. Laser Electr. (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The schematic representation of the lattice mismatch dislocation termination at the sidewalls after heteroepitaxial growth on U-shaped patterned substrate. (b) Cross-sectional transmission electron microscope (TEM) image of 600 nm Ge on the U-shape patterned Si (001). Most dislocations terminate at the Ge sidewalls and {113} faceted sawtooth surface with underlying hollow structure forms after the Ge growth. (c) and (d) The cross-view SEM pictures after 1000 nm Ge growth on Si for the patterned and unpatterned region. Inserted top-view ECCI images show that the TDDs of Ge film are 5 ×107/cm2 and 2 ×109/cm2, respectively. The scale bars are 1µm and 500 nm.
Fig. 2.
Fig. 2. (a) Cross-sectional STEM-HADDF image of GaAs grown on Ge/Si(001) sawtooth hollow structure. (b) Zoom-in HADDF image of the marked region in (a) showing the GaAs/Ge interface of the {113} plane. (c) Zoom-in HADDF image of the interface at the bottom region. The kinked line in the dashed square shows the annihilation of APB. (d) Fourier-filtered STEM image from the marked region in (c) showing the APB. The brighter atom presents As, in contrast, the relatively darker atom is Ga. The left upper region with Ga-As bonds and right lower region with As-Ga bonds in (d) are separated by APB with Ga-Ga bonds in between.
Fig. 3.
Fig. 3. HRXRD reciprocal-space maps taken around (004) (a) and (2(-)2(-)4) (b) reflections. Bragg peaks measured on the GaAs/Ge layer on patterned Si (001). Inset in (a): Higher resolution (004) map obtained by triple-axis mode.
Fig. 4.
Fig. 4. (a) and (b) AFM and plane-view ECCI images after the deposition of 400 nm GaAs on top of 600 nm thick Ge layer on the patterned Si (001) substrate. (c) and (d) AFM and plane-view ECCI images after adding 1.6µm dislocation filter structure on 400 nm GaAs.
Fig. 5.
Fig. 5. (a) STEM-HADDF image of five-layer InAs/GaAs QDs and (b) the corresponding room-temperature photoluminescence of such structure grown on GaAs/Ge/Si (001) substrate. The room temperature PL of identical QDs structures on GaAs is presented in (b) for comparison. Inset in (b): 1 × 1 µm2 AFM image of surface InAs QDs.