Abstract

Polarization coding is of great importance because of its applicability to information processing, storage, and security devices. In this paper, we numerically demonstrated a binary and ternary polarization coding scheme using a cross-shaped graphene/Au hybrid metasurface with two-dimensional (2D) electrical tunability. The C4 symmetry broken of the cross-shaped structure, caused by different lengths of Au bars in x- and y- directions, allows 2D tunability for x- and y-polarized waves at one biasing condition. For x-polarized wave incidence, the proposed structure generates near-zero or near-unit absorption by switching the graphene’s Fermi energies, corresponding to the binary codes of ‘0’ and ‘1’. Due to 2D tunability, the combination of two absorptions excited by x- and y-polarized waves at 2.45 THz are encoded into ternary codes with the states of ‘−1’, ‘0’, or ‘1’ by gating voltages. The compatibility for binary and ternary coding in the tunable metasurface opposes huge potentials in artificial intelligent devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable graphene-based terahertz absorber via an external magnetic field

Rong Cheng, Yuxiu Zhou, Hongfei Liu, Jianqiang Liu, Guanghou Sun, Xueyun Zhou, Hong Shen, Qingkai Wang, and Yikun Zha
Opt. Mater. Express 10(2) 501-512 (2020)

Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial

Tongling Wang, Yuping Zhang, Huiyun Zhang, and Maoyong Cao
Opt. Mater. Express 10(2) 369-386 (2020)

Novel tunable graphene-encoded metasurfaces on an uneven substrate for beam-steering in far-field at the terahertz frequencies

Binggang Xiao, Ying Zhang, Shengjun Tong, JiaBin Yu, and Lihua Xiao
Opt. Express 28(5) 7125-7138 (2020)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates,” Integration 62, 353–361 (2018).
    [Crossref]
  2. S. Kak, “On Ternary Coding and Three-Valued Logic,” arXiv Prepr. arXiv 1, 1–12 (2018).
  3. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref]
  4. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref]
  5. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
    [Crossref]
  6. W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
    [Crossref]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  8. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  9. L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  10. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
    [Crossref]
  11. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
    [Crossref]
  12. Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
    [Crossref]
  13. H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
    [Crossref]
  14. H. Jiang, W. Zhao, and Y. Jiang, “Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet,” Opt. Mater. Express 7(12), 4277–4285 (2017).
    [Crossref]
  15. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
    [Crossref]
  16. J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
    [Crossref]
  17. H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
    [Crossref]
  18. S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
    [Crossref]
  19. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [Crossref]
  20. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
    [Crossref]
  21. M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
    [Crossref]
  22. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  23. J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
    [Crossref]
  24. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref]
  25. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
    [Crossref]
  26. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  27. J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
    [Crossref]
  28. F. Demming-Janssen and W. Koch, “3D Field simulation of sparse arrays using various solver techniques within CST MICROWAVE STUDIO®,” in 2006 European Radar Conference (IEEE, 2006), pp. 80–83.
  29. E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject Indices for Volumes I, II, and III (Elsevier, 1998).
  30. A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
    [Crossref]
  31. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]

2019 (2)

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

2018 (1)

M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates,” Integration 62, 353–361 (2018).
[Crossref]

2017 (4)

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

H. Jiang, W. Zhao, and Y. Jiang, “Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet,” Opt. Mater. Express 7(12), 4277–4285 (2017).
[Crossref]

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

2016 (5)

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

2015 (4)

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

2014 (3)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

2013 (2)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref]

2012 (1)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

2011 (2)

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
[Crossref]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

2010 (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

2009 (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2007 (1)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Avouris, P.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

Banszerus, L.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

Bao, D.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Bechtel, H. A.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Beschoten, B.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

Boltasseva, A.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Brongersma, M. L.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Butun, B.

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Chen, C.-F.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Chen, H. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, S.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Cheng, H.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Cheng, Q.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Chu, D.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Crommie, M. F.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Cui, J.

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Cui, T. J.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Da Chiang, I.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Dash, S. P.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
[Crossref]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Demming-Janssen, F.

F. Demming-Janssen and W. Koch, “3D Field simulation of sparse arrays using various solver techniques within CST MICROWAVE STUDIO®,” in 2006 European Radar Conference (IEEE, 2006), pp. 80–83.

Devarapu, G. C. R.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Du, L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Emani, N. K.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Engels, S.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Fang, N. X.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

Feng, Y.

Foteinopoulou, S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Fung, K. H.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

Gao, L. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Geng, B.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Ghobadi, A.

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Girit, C.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Gómez-Díaz, J. S.

Guo, L. J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Guo, Y.

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Hajian, H.

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Han, J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Hao, Z.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Hashemipour, O.

M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates,” Integration 62, 353–361 (2018).
[Crossref]

He, Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Horng, J.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Hsu, W. L.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Huang, C.

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Huang, Y. W.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jiang, H.

Jiang, T.

Jiang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jiang, Y.

Jin, B. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kak, S.

S. Kak, “On Ternary Coding and Three-Valued Logic,” arXiv Prepr. arXiv 1, 1–12 (2018).

Kang, J. H.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Kildishev, A. V.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Kim, S. J.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

Koch, W.

F. Demming-Janssen and W. Koch, “3D Field simulation of sparse arrays using various solver techniques within CST MICROWAVE STUDIO®,” in 2006 European Radar Conference (IEEE, 2006), pp. 80–83.

Krishna, S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Kumar, A.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Lee, J. Y.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Lee, K. T.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Li, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Li, L. L.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Li, Y. B.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

Li, Z.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Liang, L. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liao, C. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Lin, H. T.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Liu, A. Q.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Liu, J. F.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

Liu, S.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Liu, W. W.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, X.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

Low, T.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

Luo, X.

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Ma, H. F.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, S. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Martin, M.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Navi, K.

M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates,” Integration 62, 353–361 (2018).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Ouyang, C.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Ozbay, E.

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject Indices for Volumes I, II, and III (Elsevier, 1998).

Pan, W.

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Panahi, M. M.

M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates,” Integration 62, 353–361 (2018).
[Crossref]

Park, J.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Perruisseau-Carrier, J.

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Pu, M.

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Schmitz, M.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Seo, S.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Serebryannikov, A. E.

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Shalaev, V. M.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Stampfer, C.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Subramania, G. S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Sun, G.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Sun, S.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Tang, W.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

Tang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Taniguchi, T.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Tian, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Tombros, N.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
[Crossref]

Tsai, D. P.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Van Wees, B. J.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
[Crossref]

Vandenbosch, G. A. E.

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Wan, X.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, C. M.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Wasserman, D.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Watanabe, K.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Wen, Q. Y.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, P. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Wu, R. Y.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

Wu, W.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

Xie, B.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Xu, B. B.

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

Xu, J.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

Xu, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Yang, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yang, K. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Yao, J. Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

You, Z.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Yu, P.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Yuan, H.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Zettl, A.

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Zhang, H. C.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

Zhang, W.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Zhang, Y.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Zhang, Z.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

Zhao, W.

Zhou, L.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Zhou, X. Y.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Zhu, B.

Zomer, P. J.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
[Crossref]

Adv. Mater. Technol. (1)

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. F. Liu, “Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial,” Adv. Mater. Technol. 2(1), 1600202 (2017).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99(23), 232104 (2011).
[Crossref]

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110(26), 263110 (2017).
[Crossref]

Integration (1)

M. M. Panahi, O. Hashemipour, and K. Navi, “A novel design of a ternary coded decimal adder/subtractor using reversible ternary gates,” Integration 62, 353–361 (2018).
[Crossref]

J. Appl. Phys. (1)

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials,” J. Appl. Phys. 126(19), 193102 (2019).
[Crossref]

Light: Sci. Appl. (3)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Nano Lett. (3)

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Da Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref]

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hbn system,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref]

Nanophotonics (2)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Nat. Commun. (1)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nat. Nanotechnol. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (3)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Sci. Rep. (2)

Y. B. Li, L. L. Li, B. B. Xu, W. Wu, R. Y. Wu, X. Wan, Q. Cheng, and T. J. Cui, “Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging,” Sci. Rep. 6(1), 1–8 (2016).
[Crossref]

J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, and X. Luo, “Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror,” Sci. Rep. 6(1), 1–9 (2016).
[Crossref]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Other (3)

S. Kak, “On Ternary Coding and Three-Valued Logic,” arXiv Prepr. arXiv 1, 1–12 (2018).

F. Demming-Janssen and W. Koch, “3D Field simulation of sparse arrays using various solver techniques within CST MICROWAVE STUDIO®,” in 2006 European Radar Conference (IEEE, 2006), pp. 80–83.

E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject Indices for Volumes I, II, and III (Elsevier, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Frequency tunability for x-polarized incident light. (a) The scheme of Au/graphene bar in a unit cell (p = 40 µm, l = 34 µm and w = 6 µm). The thickness of Au and graphene bar are 100 nm and 1 nm, respectively. (b) The vectorial E-field distributions at x-z plane in the middle of Au/graphene bar at 2.45 THz, (c) The polarization-dependent absorption spectra with different graphene’s Fermi energies of 0 and 0.42 eV.
Fig. 2.
Fig. 2. Two-dimensional (2D) tunability. (a) The cross-shaped Au/graphene array (top view), (b) the unit cell of the periodical array, p = 40µm, w = 6 µm, x = 34 µm, y = 36 µm, the thickness of Au and graphene are 100 and 1 nm, and the thicknesses of hBN and dielectric spacer are 1 nm and 17 µm, respectively.
Fig. 3.
Fig. 3. The absorption spectra of the cross-shaped array under the x- and y-polarized THz wave incidences with graphene’s Fermi energies of 0 eV and 0.42 eV.
Fig. 4.
Fig. 4. Binary codes for x- or y-polarized light. The polarization absorptions of near 1 and 0 can be encoded into binary codes by controlling graphene’s Fermi energy.
Fig. 5.
Fig. 5. The absorption spectra of cross-shaped Au/graphene array for x- and y-polarized incident light with three different graphene’s Fermi energies.
Fig. 6.
Fig. 6. Ternary codes are controlled by gated graphene, which are represented by absorption combination.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ω 0 = V d V [ ( Δ μ H 0 ) H 0 + ( Δ ε E 0 ) E 0 ] V d V [ μ H 0 H 0 + ε E 0 E 0 ]
σ ( ω ) = 2 e 2 ω T π i ω + i τ 1 log [ 2 cosh ( ω F 2 ω T ) ] + e 2 4 [ H ( ω 2 ) + i 2 ω π 0 H ( ω 2 ) H ( ω 2 ) ω 2 ω 2 d ω ]
τ = μ D C E F / μ D C E F e v F 2 e v F 2
ω T O , = 23.38 THz
ε m = ε , m + ε , m × ( ω LO , m ) 2 ( ω TO , m ) 2 ( ω TO , m ) 2 ω 2 i ω Γ m

Metrics