Abstract

Solar selective absorbers are the most critical part of solar water heaters that can be integrated into architecture. A high-performance absorber with a solar absorptance α higher than 95% and an infrared emissivity ɛ below 4% is fabricated by sputtering using TiNxOy based multilayers. The highest absorptance is 97.5% and the corresponding energy utilization efficiency (α/ɛ) value is as high as 26.2. The absorber has excellent thermal stability that can maintain its property after heating at 400 °C for 100 hr in air. It can even be tempered on the glass substrate, which is of great significance for lowering the cost and expanding its applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings

Feiliang Chen, Shao-Wei Wang, Liming Yu, Xiaoshuang Chen, and Wei Lu
Opt. Mater. Express 4(9) 1833-1847 (2014)

Colorful solar selective absorber integrated with different colored units

Feiliang Chen, Shao-Wei Wang, Xingxing Liu, Ruonan Ji, Zhifeng Li, Xiaoshuang Chen, Yuwei Chen, and Wei Lu
Opt. Express 24(2) A92-A103 (2016)

Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability

Wei-Xi Zhou, Yan Shen, Er-Tao Hu, Yuan Zhao, Ming-Yu Sheng, Yu-Xiang Zheng, Song-You Wang, Young-Pak Lee, Cai-Zhuang Wang, David W. Lynch, and Liang-Yao Chen
Opt. Express 20(27) 28953-28962 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. G. Granqvist, “Solar Energy Materials,” ChemInform 35(2), 2278 (2004).
    [Crossref]
  2. T. K. Ghosh and M. A. Prelas, “Solar Energy,” Energy Resources & Systems 81(2), 79–156 (2011).
    [Crossref]
  3. S.-A. Cho, R. Fookes, and C. A. Garris, “Efficiency of ceramic absorber coatings for solar-thermal conversion,” Ceram. Int. 7(1), 8–12 (1981).
    [Crossref]
  4. A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
    [Crossref]
  5. S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
    [Crossref]
  6. T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
    [Crossref]
  7. H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
    [Crossref]
  8. S. Yue, S. Yueyan, and W. Fengchun, “High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering,” Sol. Energy Mater. Sol. Cells 77(4), 393–403 (2003).
    [Crossref]
  9. L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
    [Crossref]
  10. G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
    [Crossref]
  11. D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95(10), 2703–2725 (2011).
    [Crossref]
  12. A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
    [Crossref]
  13. L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
    [Crossref]
  14. P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
    [Crossref]
  15. F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
    [Crossref]
  16. M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
    [Crossref]
  17. I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
    [Crossref]
  18. Y. Liu, C. Wang, and Y. Xue, “The spectral properties and thermal stability of NbTiON solar selective absorbing coating,” Sol. Energy Mater. Sol. Cells 96, 131–136 (2012).
    [Crossref]
  19. Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
    [Crossref]
  20. F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
    [Crossref]
  21. M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
    [Crossref]
  22. H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
    [Crossref]
  23. F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
    [Crossref]
  24. L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
    [Crossref]
  25. F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Colorful solar selective absorber integrated with different colored units,” Opt. Express 24(2), A92–A103 (2016).
    [Crossref]
  26. H. J. Gläser, “History of the development and industrial production of low thermal emissivity coatings for high heat insulating glass units,” Appl. Opt. 47(13), C193–C199 (2008).
    [Crossref]

2019 (2)

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

2018 (1)

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

2016 (3)

A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
[Crossref]

M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Colorful solar selective absorber integrated with different colored units,” Opt. Express 24(2), A92–A103 (2016).
[Crossref]

2015 (3)

F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
[Crossref]

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

2014 (3)

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
[Crossref]

Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
[Crossref]

2013 (2)

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

2012 (2)

Y. Liu, C. Wang, and Y. Xue, “The spectral properties and thermal stability of NbTiON solar selective absorbing coating,” Sol. Energy Mater. Sol. Cells 96, 131–136 (2012).
[Crossref]

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

2011 (2)

D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95(10), 2703–2725 (2011).
[Crossref]

T. K. Ghosh and M. A. Prelas, “Solar Energy,” Energy Resources & Systems 81(2), 79–156 (2011).
[Crossref]

2010 (1)

G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
[Crossref]

2008 (2)

H. J. Gläser, “History of the development and industrial production of low thermal emissivity coatings for high heat insulating glass units,” Appl. Opt. 47(13), C193–C199 (2008).
[Crossref]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

2006 (1)

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

2004 (1)

C. G. Granqvist, “Solar Energy Materials,” ChemInform 35(2), 2278 (2004).
[Crossref]

2003 (1)

S. Yue, S. Yueyan, and W. Fengchun, “High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering,” Sol. Energy Mater. Sol. Cells 77(4), 393–403 (2003).
[Crossref]

1985 (1)

T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
[Crossref]

1981 (1)

S.-A. Cho, R. Fookes, and C. A. Garris, “Efficiency of ceramic absorber coatings for solar-thermal conversion,” Ceram. Int. 7(1), 8–12 (1981).
[Crossref]

Abadias, G.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Alves, E.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Andritschky, M.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Antonetti, Y.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Arés-Muzio, O.

M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
[Crossref]

Barlev, D.

D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95(10), 2703–2725 (2011).
[Crossref]

Barshilia, H. C.

A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
[Crossref]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Basu, B.

A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
[Crossref]

Bellas, D. V.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Berthier, S.

T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
[Crossref]

Biswas, A.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Bouvard, O.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Butun, B.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Cao, F.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
[Crossref]

Cao, H.

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

Capela, P.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Chattopadhyay, K.

A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
[Crossref]

Chen, F.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Colorful solar selective absorber integrated with different colored units,” Opt. Express 24(2), A92–A103 (2016).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
[Crossref]

Chen, G.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
[Crossref]

Chen, X.

Chen, Y.

Cho, S.-A.

S.-A. Cho, R. Fookes, and C. A. Garris, “Efficiency of ceramic absorber coatings for solar-thermal conversion,” Ceram. Int. 7(1), 8–12 (1981).
[Crossref]

Dan, A.

A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
[Crossref]

Diao, X.

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Estrella-Gutiérrez, M. A.

M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
[Crossref]

Fengchun, W.

S. Yue, S. Yueyan, and W. Fengchun, “High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering,” Sol. Energy Mater. Sol. Cells 77(4), 393–403 (2003).
[Crossref]

Fookes, R.

S.-A. Cho, R. Fookes, and C. A. Garris, “Efficiency of ceramic absorber coatings for solar-thermal conversion,” Ceram. Int. 7(1), 8–12 (1981).
[Crossref]

Gao, F.

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Gao, J.

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

Garris, C. A.

S.-A. Cho, R. Fookes, and C. A. Garris, “Efficiency of ceramic absorber coatings for solar-thermal conversion,” Ceram. Int. 7(1), 8–12 (1981).
[Crossref]

Gascou, T.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Ghobadi, A.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Ghosh, T. K.

T. K. Ghosh and M. A. Prelas, “Solar Energy,” Energy Resources & Systems 81(2), 79–156 (2011).
[Crossref]

Gläser, H. J.

Gokbayrak, M.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Gong, G.

G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
[Crossref]

González Lazo, M. A.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Granqvist, C. G.

C. G. Granqvist, “Solar Energy Materials,” ChemInform 35(2), 2278 (2004).
[Crossref]

Hajian, H.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Hao, M.

G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
[Crossref]

Hessler-Wyser, A.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Hou, M.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

Huang, X.

G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
[Crossref]

Ji, R.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Colorful solar selective absorber integrated with different colored units,” Opt. Express 24(2), A92–A103 (2016).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
[Crossref]

Joly, M.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Khodasevych, I. E.

I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Lafait, J.

T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
[Crossref]

Lei, D.

Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
[Crossref]

Lekka, C.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Li, Z.

Liang, L.

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

Lidorikis, E.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Liu, X.

Liu, Y.

Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
[Crossref]

Y. Liu, C. Wang, and Y. Xue, “The spectral properties and thermal stability of NbTiON solar selective absorbing coating,” Sol. Energy Mater. Sol. Cells 96, 131–136 (2012).
[Crossref]

Liu, Z.

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

Lizama-Tzec, F. I.

M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
[Crossref]

Loesch, P.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Lu, W.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Colorful solar selective absorber integrated with different colored units,” Opt. Express 24(2), A92–A103 (2016).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
[Crossref]

F. Chen, S.-W. Wang, X. Liu, R. Ji, Z. Li, X. Chen, Y. Chen, and W. Lu, “Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings,” Opt. Mater. Express 4(9), 1833–1847 (2014).
[Crossref]

Matilainen, A.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

McEnaney, K.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
[Crossref]

Mitchell, A.

I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Muraleedharan, K.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Nshimiyimana, J. P.

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Oskam, G.

M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
[Crossref]

Ozbay, E.

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Pischow, K.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Prelas, M. A.

T. K. Ghosh and M. A. Prelas, “Solar Energy,” Energy Resources & Systems 81(2), 79–156 (2011).
[Crossref]

Python, M.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Rajam, K. S.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Rao, D. V. S.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Rebouta, L.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Ren, Z.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
[Crossref]

Rosengarten, G.

I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Santilli, P.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Schüler, A.

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Sella, C.

T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
[Crossref]

Selvakumar, N.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Sridhara Rao, D. V.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

Stroeve, P.

D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95(10), 2703–2725 (2011).
[Crossref]

Vidu, R.

D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95(10), 2703–2725 (2011).
[Crossref]

Vien, T. K.

T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
[Crossref]

Wang, C.

Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
[Crossref]

Y. Liu, C. Wang, and Y. Xue, “The spectral properties and thermal stability of NbTiON solar selective absorbing coating,” Sol. Energy Mater. Sol. Cells 96, 131–136 (2012).
[Crossref]

Wang, J.

G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
[Crossref]

Wang, L. P.

I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Wang, S.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

Wang, S.-W.

Wang, Z.

Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
[Crossref]

Wu, L.

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

Xia, F.

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

Xue, Y.

Y. Liu, C. Wang, and Y. Xue, “The spectral properties and thermal stability of NbTiON solar selective absorbing coating,” Sol. Energy Mater. Sol. Cells 96, 131–136 (2012).
[Crossref]

Yi, F.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

Yu, L.

F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
[Crossref]

Yue, S.

S. Yue, S. Yueyan, and W. Fengchun, “High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering,” Sol. Energy Mater. Sol. Cells 77(4), 393–403 (2003).
[Crossref]

Yueyan, S.

S. Yue, S. Yueyan, and W. Fengchun, “High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering,” Sol. Energy Mater. Sol. Cells 77(4), 393–403 (2003).
[Crossref]

Zhang, T.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

Zhao, S.

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Zheng, L.

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Zheng, W.

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

Zhou, F.

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Adv. Opt. Mater. (2)

S. Wang, F. Chen, R. Ji, M. Hou, F. Yi, W. Zheng, T. Zhang, and W. Lu, “Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering,” Adv. Opt. Mater. 7(9), 1801596 (2019).
[Crossref]

I. E. Khodasevych, L. P. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. S. Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett. 89(19), 191909 (2006).
[Crossref]

Appl. Surf. Sci. (1)

L. Zheng, F. Gao, S. Zhao, F. Zhou, J. P. Nshimiyimana, and X. Diao, “Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating,” Appl. Surf. Sci. 280, 240–246 (2013).
[Crossref]

Appl. Therm. Eng. (1)

A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, “Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,” Appl. Therm. Eng. 109, 997–1002 (2016).
[Crossref]

Ceram. Int. (1)

S.-A. Cho, R. Fookes, and C. A. Garris, “Efficiency of ceramic absorber coatings for solar-thermal conversion,” Ceram. Int. 7(1), 8–12 (1981).
[Crossref]

ChemInform (1)

C. G. Granqvist, “Solar Energy Materials,” ChemInform 35(2), 2278 (2004).
[Crossref]

Electrochim. Acta (1)

M. A. Estrella-Gutiérrez, F. I. Lizama-Tzec, O. Arés-Muzio, and G. Oskam, “Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper,” Electrochim. Acta 213, 460–468 (2016).
[Crossref]

Energy Environ. Sci. (1)

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7(5), 1615 (2014).
[Crossref]

Energy Resources & Systems (1)

T. K. Ghosh and M. A. Prelas, “Solar Energy,” Energy Resources & Systems 81(2), 79–156 (2011).
[Crossref]

J. Mater. Chem. A (1)

F. Chen, S.-W. Wang, X. Liu, R. Ji, L. Yu, X. Chen, and W. Lu, “High performance colored selective absorbers for architecturally integrated solar applications,” J. Mater. Chem. A 3(14), 7353–7360 (2015).
[Crossref]

Mater. Sci. Eng., R (1)

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng., R 123, 1–55 (2018).
[Crossref]

Nanophotonics (1)

A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8(5), 823–832 (2019).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Sol. Energy (1)

G. Gong, X. Huang, J. Wang, and M. Hao, “An optimized model and test of the China's first high temperature parabolic trough solar receiver,” Sol. Energy 84(12), 2230–2245 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (7)

D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Sol. Energy Mater. Sol. Cells 95(10), 2703–2725 (2011).
[Crossref]

M. Joly, O. Bouvard, T. Gascou, Y. Antonetti, M. Python, M. A. González Lazo, P. Loesch, A. Hessler-Wyser, and A. Schüler, “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells 143, 573–580 (2015).
[Crossref]

Y. Liu, C. Wang, and Y. Xue, “The spectral properties and thermal stability of NbTiON solar selective absorbing coating,” Sol. Energy Mater. Sol. Cells 96, 131–136 (2012).
[Crossref]

Y. Liu, Z. Wang, D. Lei, and C. Wang, “A new solar spectral selective absorbing coating of SS–(Fe3O4)/Mo/TiZrN/TiZrON/SiON for high temperature application,” Sol. Energy Mater. Sol. Cells 127, 143–146 (2014).
[Crossref]

S. Yue, S. Yueyan, and W. Fengchun, “High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering,” Sol. Energy Mater. Sol. Cells 77(4), 393–403 (2003).
[Crossref]

L. Wu, J. Gao, Z. Liu, L. Liang, F. Xia, and H. Cao, “Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications,” Sol. Energy Mater. Sol. Cells 114, 186–191 (2013).
[Crossref]

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells 105, 202–207 (2012).
[Crossref]

Thin Solid Films (1)

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, and K. Muraleedharan, “Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering,” Thin Solid Films 516(18), 6071–6078 (2008).
[Crossref]

Vacuum (1)

T. K. Vien, C. Sella, J. Lafait, and S. Berthier, “Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C,” Vacuum 126(1-2), 17–22 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of solar selective absorption structure Sub/Cu/TiNxOy /Si3N4/SiO2, where the substrate is K9 glass. Cu is used as an IR reflector. SiO2 together with Si3N4 acts as a protective layer structure with features of anti-oxidation, anti-corrosion, and anti-wear.
Fig. 2.
Fig. 2. (a) The cross-sectional image observation of Glass/Cu/TiNxOy/Si3N4/SiO2 multilayered structure (b) The cross-sectional image of Glass/Cu/TiNxOy/TiO2/Si3N4/SiO2 multilayered structure.
Fig. 3.
Fig. 3. Reflectance spectra of S1 (Glass/Cu/TiNxOy/Si3N4/SiO2 with initial solar absorptance 95.8%) with different heating time at 250 °C. The green line indicates the normalized solar spectrum.
Fig. 4.
Fig. 4. The heating time dependence of solar absorptance of S1 (Glass/Cu/TiNxOy/Si3N4/SiO2 with initial solar absorptance 95.8%) at 250 °C. The red line is the fitting curve and the dots are experimental data.
Fig. 5.
Fig. 5. Reflectance spectra of S2 (Glass/Cu/TiNxOy/Si3N4/SiO2 with initial Solar absorptance 96.8%) before and after heating at 250 °C in air for 200 hr. The gray dash line represents the normalized solar spectrum, and the gray line indicates the black body normalized radiation spectrum.
Fig. 6.
Fig. 6. Reflectance spectra of S3 (Glass/Cu/TiNxOy/TiO2/Si3N4/SiO2 with initial solar absorptance of 97.5%) before and after heating at 400 °C in air for 100 hr, inset depicts the structure of S3, the gray dash line is the normalized solar spectrum AM1.5 and the gray dotted line represents the black body normalized radiation spectrum.
Fig. 7.
Fig. 7. (a) Photographs of samples before and after tempered, (a-1) Glass/Cu/TiNxOy/Si3N4/SiO2 and (a-2) Glass/NiCr(10 nm)/Cu/TiNxOy/Si3N4/SiO2. (b) are their corresponding reflectance spectra. The black solid line is the reflection spectrum of sample before tempered, the red dotted line is the reflection spectrum of Glass/NiCr(10 nm)/Cu/TiNxOy/Si3N4/SiO2-after tempered, the blue dotted line is the reflection spectrum of Glass/Cu/TiNxOy/Si3N4/SiO2-after tempered.

Tables (1)

Tables Icon

Table 1. Thermal stability experiments of TiNxOy based multilayers in air

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α = 0.3 μ m 2.5 μ m A ( λ ) [ 1 R ( λ ) ] d λ 0.3 μ m 2.5 μ m A ( λ ) d λ
ε = 2.5 μ m 25 μ m I b ( λ , T ) [ 1 R ( λ ) ] d λ 2 , 5 μ m 25 , μ m I b ( λ , T ) d λ
I b ( λ , T ) = 2 π h c 2 λ 5 ( e h c k λ T 1 )