Abstract

The optical properties of the polymer composites consisting of polyvinyl chloride nanofibers and polypropylene films in the frequency range of 0.2–1.0 THz were studied, and the mechanical properties of polyvinyl chloride nanofibers and the structure porosity were investigated. An iterative mathematical model based on effective medium theory was used to describe the effective refractive index and absorption coefficient of the polymer composites. The permittivity tensors of the composites were calculated using the Rytov method. We found that the refractive indices of the composites increased with the increase of polypropylene contents, while absorption coefficients remained the same. The polarization-dependencies of THz optical properties of the composites were relatively low. The proposed composites have the potential to be used as materials for terahertz optical components.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoporous SiO2 based on annealed artificial opals as a favorable material platform of terahertz optics

V. E. Ulitko, A. K. Zotov, A. A. Gavdush, G. M. Katyba, G. A. Komandin, I. E. Spektor, I. M. Shmytko, G. A. Emelchenko, I. N. Dolganova, M. Skorobogatiy, V. N. Kurlov, V. M. Masalov, and K. I. Zaytsev
Opt. Mater. Express 10(9) 2100-2113 (2020)

Terahertz optical properties of wood–plastic composites

Atsushi Nakanishi and Hiroshi Satozono
Appl. Opt. 59(4) 904-909 (2020)

Terahertz optical material based on wood-plastic composites

Atsushi Nakanishi and Hironori Takahashi
Opt. Mater. Express 8(12) 3653-3658 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  2. C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
    [Crossref]
  3. R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
    [Crossref]
  4. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
    [Crossref]
  5. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
    [Crossref]
  6. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
    [Crossref]
  7. M. Naftaly, Terahertz Metrology (Artech House, 2015).
  8. A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.
  9. E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
    [Crossref]
  10. A. Ramos, I. Cameán, and A. B. García, “Graphitization thermal treatment of carbon nanofibers,” Carbon 59, 2–32 (2013).
    [Crossref]
  11. C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
    [Crossref]
  12. C. Goy, M. Scheller, B. Scherger, V. P. Wallace, and M. Koch, “Terahertz waveguide prism,” Opt. Express 21(16), 19292–19301 (2013).
    [Crossref]
  13. A. Squires, E. Constable, and R. Lewis, “3d printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36(1), 72–80 (2015).
    [Crossref]
  14. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
    [Crossref]
  15. A. Nakanishi and H. Takahashi, “Terahertz optical material based on wood-plastic composites,” Opt. Mater. Express 8(12), 3653–3658 (2018).
    [Crossref]
  16. A. Nakanishi and H. Satozono, “Terahertz optical properties of wood-plastic composites,” Appl. Opt. 59(4), 904–909 (2020).
    [Crossref]
  17. R. Ortuño, C. García-Meca, and A. Martínez, “Terahertz metamaterials on flexible polypropylene substrate,” Plasmonics 9(5), 1143–1147 (2014).
    [Crossref]
  18. G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
    [Crossref]
  19. S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
    [Crossref]
  20. G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
    [Crossref]
  21. S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.
  22. F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, “A review on electrospinning for membrane fabrication: challenges and applications,” Desalination 356, 15–30 (2015).
    [Crossref]
  23. V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
    [Crossref]
  24. X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
    [Crossref]
  25. M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
    [Crossref]
  26. M. Gorji, R. Bagherzadeh, and H. Fashandi, “Electrospun nanofibers in protective clothing,” in Electrospun Nanofibers, (Elsevier, 2017), pp. 571–598.
  27. J. Hu and K.-Q. Zhang, “Electrospun nanofibers for optical applications,” in Electrospinning: Nanofabrication and Applications, (Elsevier, 2019), pp. 603–617.
  28. A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
    [Crossref]
  29. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JEPT 2, 466–475 (1956).
  30. J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
    [Crossref]
  31. S. L. Dexheimer, Terahertz spectroscopy: Principles and Applications (CRC Press, 2007).
  32. D. Swinehart, “The beer-lambert law,” J. Chem. Educ. 39(7), 333 (1962).
    [Crossref]
  33. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [Crossref]
  34. C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
    [Crossref]
  35. S. Nelson and T.-S. You, “Relationships between microwave permittivities of solid and pulverised plastics,” J. Phys. D: Appl. Phys. 23(3), 346–353 (1990).
    [Crossref]
  36. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
    [Crossref]
  37. W. Nakata and M. Suzuki, “Dielectric properties of wet snow in microwave region,” in Snow Engineering: Recent Advances: Proceedings of the third international conference, Sendai, Japan, 26-31 May 1996, (CRC Press, 1997), p. 161.
  38. R. Nazarov, M. K. Khodzitskiy, and T. Zhang, “Comparison of mathematical models for the calculation of optical properties of composite medium in the terahertz regime,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2019), pp. 1–2.
  39. A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3d printed terahertz devices,” J. Infrared, Millimeter, Terahertz Waves 39(7), 614–635 (2018).
    [Crossref]
  40. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  41. G. M. Png, R. J. Falconer, B. M. Fischer, H. A. Zakaria, S. P. Mickan, A. P. Middelberg, and D. Abbott, “Terahertz spectroscopic differentiation of microstructures in protein gels,” Opt. Express 17(15), 13102–13115 (2009).
    [Crossref]
  42. M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
    [Crossref]

2020 (1)

2019 (2)

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

2018 (3)

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

A. Nakanishi and H. Takahashi, “Terahertz optical material based on wood-plastic composites,” Opt. Mater. Express 8(12), 3653–3658 (2018).
[Crossref]

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3d printed terahertz devices,” J. Infrared, Millimeter, Terahertz Waves 39(7), 614–635 (2018).
[Crossref]

2017 (4)

M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
[Crossref]

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
[Crossref]

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
[Crossref]

2016 (2)

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

2015 (2)

F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, “A review on electrospinning for membrane fabrication: challenges and applications,” Desalination 356, 15–30 (2015).
[Crossref]

A. Squires, E. Constable, and R. Lewis, “3d printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

2014 (2)

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

R. Ortuño, C. García-Meca, and A. Martínez, “Terahertz metamaterials on flexible polypropylene substrate,” Plasmonics 9(5), 1143–1147 (2014).
[Crossref]

2013 (3)

C. Goy, M. Scheller, B. Scherger, V. P. Wallace, and M. Koch, “Terahertz waveguide prism,” Opt. Express 21(16), 19292–19301 (2013).
[Crossref]

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

A. Ramos, I. Cameán, and A. B. García, “Graphitization thermal treatment of carbon nanofibers,” Carbon 59, 2–32 (2013).
[Crossref]

2012 (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
[Crossref]

2010 (2)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

2009 (3)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
[Crossref]

G. M. Png, R. J. Falconer, B. M. Fischer, H. A. Zakaria, S. P. Mickan, A. P. Middelberg, and D. Abbott, “Terahertz spectroscopic differentiation of microstructures in protein gels,” Opt. Express 17(15), 13102–13115 (2009).
[Crossref]

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

2008 (1)

G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
[Crossref]

2007 (3)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

2006 (1)

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

1990 (2)

S. Nelson and T.-S. You, “Relationships between microwave permittivities of solid and pulverised plastics,” J. Phys. D: Appl. Phys. 23(3), 346–353 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
[Crossref]

1962 (1)

D. Swinehart, “The beer-lambert law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JEPT 2, 466–475 (1956).

Abbott, D.

Ahmed, F. E.

F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, “A review on electrospinning for membrane fabrication: challenges and applications,” Desalination 356, 15–30 (2015).
[Crossref]

Al-Naib, I. A.

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

Altan, H.

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

Bagherzadeh, R.

M. Gorji, R. Bagherzadeh, and H. Fashandi, “Electrospun nanofibers in protective clothing,” in Electrospun Nanofibers, (Elsevier, 2017), pp. 571–598.

Barbhuiya, S.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Cameán, I.

A. Ramos, I. Cameán, and A. B. García, “Graphitization thermal treatment of carbon nanofibers,” Carbon 59, 2–32 (2013).
[Crossref]

Camposeo, A.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Chamorro-Posada, P.

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Chee, K. L.

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

Chen, Y.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Choonara, Y. E.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Constable, E.

A. Squires, E. Constable, and R. Lewis, “3d printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Danylov, A.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Demchenko, P.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Dexheimer, S. L.

S. L. Dexheimer, Terahertz spectroscopy: Principles and Applications (CRC Press, 2007).

Dickinson, J. C.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Dong, Y.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Dott, C.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

du Toit, L. C.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Duan, X.-P.

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

Esenturk, O.

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

Ewert, U.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

Falconer, R. J.

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
[Crossref]

Farsari, M.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Fashandi, H.

M. Gorji, R. Bagherzadeh, and H. Fashandi, “Electrospun nanofibers in protective clothing,” in Electrospun Nanofibers, (Elsevier, 2017), pp. 571–598.

Fattinger, C.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Fischer, B. M.

Fraile-Peláez, F. J.

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Fu, W.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

García, A. B.

A. Ramos, I. Cameán, and A. B. García, “Graphitization thermal treatment of carbon nanofibers,” Carbon 59, 2–32 (2013).
[Crossref]

García-Meca, C.

R. Ortuño, C. García-Meca, and A. Martínez, “Terahertz metamaterials on flexible polypropylene substrate,” Plasmonics 9(5), 1143–1147 (2014).
[Crossref]

Gatesman, A. J.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Gerlach, K.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Giles, R. H.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Goodhue, W.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Gorji, M.

M. Gorji, R. Bagherzadeh, and H. Fashandi, “Electrospun nanofibers in protective clothing,” in Electrospun Nanofibers, (Elsevier, 2017), pp. 571–598.

Goy, C.

Goyette, T. M.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Grigorev, R.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Grischkowsky, D.

Guo, L.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Harris, B.

S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
[Crossref]

Hashaikeh, R.

F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, “A review on electrospinning for membrane fabrication: challenges and applications,” Desalination 356, 15–30 (2015).
[Crossref]

Hoen, W.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Hu, J.

J. Hu and K.-Q. Zhang, “Electrospun nanofibers for optical applications,” in Electrospinning: Nanofabrication and Applications, (Elsevier, 2019), pp. 603–617.

Hu, X.

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

Huang, Y.

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

Jansen, C.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
[Crossref]

Jing, X.

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

Jördens, C.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

Kakenov, N.

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

Karpowicz, N.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Kaya, E.

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

Keiding, S.

Kelkar, A. D.

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
[Crossref]

Khamid, A.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Khare, S.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

Khodzitskiy, M.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Khodzitskiy, M. K.

R. Nazarov, M. K. Khodzitskiy, and T. Zhang, “Comparison of mathematical models for the calculation of optical properties of composite medium in the terahertz regime,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2019), pp. 1–2.

Kim, G.

G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
[Crossref]

Kim, W.

G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
[Crossref]

Kitai, M.

M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
[Crossref]

Kocabas, C.

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

Koch, M.

C. Goy, M. Scheller, B. Scherger, V. P. Wallace, and M. Koch, “Terahertz waveguide prism,” Opt. Express 21(16), 19292–19301 (2013).
[Crossref]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
[Crossref]

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Krumbholz, N.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Kumar, P.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Kürner, T.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Kuzikova, A.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Lalia, B. S.

F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, “A review on electrospinning for membrane fabrication: challenges and applications,” Desalination 356, 15–30 (2015).
[Crossref]

Lee, S.-J.

S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
[Crossref]

Lewis, R.

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3d printed terahertz devices,” J. Infrared, Millimeter, Terahertz Waves 39(7), 614–635 (2018).
[Crossref]

A. Squires, E. Constable, and R. Lewis, “3d printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Li, Y.-M.

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

Liu, D.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Liu, H.-B.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Liu, M.

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

Liu, S.

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

Liu, Y.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Long, Y.-Z.

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

López-Santos, J. M.

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Luo, Y.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Martínez, A.

R. Ortuño, C. García-Meca, and A. Martínez, “Terahertz metamaterials on flexible polypropylene substrate,” Plasmonics 9(5), 1143–1147 (2014).
[Crossref]

Martín-Ramos, P.

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Mickan, S. P.

Middelberg, A. P.

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Mittleman, D.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Mohammadzadehmoghadam, S.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Moneke, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

M. Naftaly, Terahertz Metrology (Artech House, 2015).

Nakanishi, A.

Nakata, W.

W. Nakata and M. Suzuki, “Dielectric properties of wet snow in microwave region,” in Snow Engineering: Recent Advances: Proceedings of the third international conference, Sendai, Japan, 26-31 May 1996, (CRC Press, 1997), p. 161.

Nazarov, M.

M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
[Crossref]

Nazarov, R.

R. Nazarov, M. K. Khodzitskiy, and T. Zhang, “Comparison of mathematical models for the calculation of optical properties of composite medium in the terahertz regime,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2019), pp. 1–2.

Ndesendo, V. M.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Nedorezova, P.

M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
[Crossref]

Nelson, S.

S. Nelson and T.-S. You, “Relationships between microwave permittivities of solid and pulverised plastics,” J. Phys. D: Appl. Phys. 23(3), 346–353 (1990).
[Crossref]

Nixon, W. E.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Nowicki, M.

S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
[Crossref]

Ortuño, R.

R. Ortuño, C. García-Meca, and A. Martínez, “Terahertz metamaterials on flexible polypropylene substrate,” Plasmonics 9(5), 1143–1147 (2014).
[Crossref]

Park, S.

G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
[Crossref]

Peik, S.

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

Persano, L.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Pickwell-MacPherson, E.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
[Crossref]

Piesiewicz, R.

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Pillay, V.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Pisignano, D.

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Png, G. M.

Pupeza, I.

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

Qi, X.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Ramos, A.

A. Ramos, I. Cameán, and A. B. García, “Graphitization thermal treatment of carbon nanofibers,” Carbon 59, 2–32 (2013).
[Crossref]

Reisecker, V.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

Richter, H.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

Romeike, D.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

Rubiños-López, Ó.

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Rutz, F.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JEPT 2, 466–475 (1956).

Satozono, H.

Scheller, M.

C. Goy, M. Scheller, B. Scherger, V. P. Wallace, and M. Koch, “Terahertz waveguide prism,” Opt. Express 21(16), 19292–19301 (2013).
[Crossref]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
[Crossref]

Scherger, B.

Senyuk, A.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Shkurinov, A.

M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
[Crossref]

Son, J.

G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
[Crossref]

Squires, A.

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3d printed terahertz devices,” J. Infrared, Millimeter, Terahertz Waves 39(7), 614–635 (2018).
[Crossref]

A. Squires, E. Constable, and R. Lewis, “3d printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
[Crossref]

Suzuki, M.

W. Nakata and M. Suzuki, “Dielectric properties of wet snow in microwave region,” in Snow Engineering: Recent Advances: Proceedings of the third international conference, Sendai, Japan, 26-31 May 1996, (CRC Press, 1997), p. 161.

Svechkova, A.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Swinehart, D.

D. Swinehart, “The beer-lambert law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

Takahashi, H.

Tang, Y.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Tomar, L.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Tyagi, C.

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

Umer, R.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

Van Exter, M.

Vázquez-Cabo, J.

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Waldman, J.

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

Wallace, V. P.

Wang, G.

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
[Crossref]

Wenke, G.

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

Wiesauer, K.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

Wietzke, S.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
[Crossref]

Xie, Z.

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

Yang, D.-P.

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

Yang, K.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Yang, X.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

You, T.-S.

S. Nelson and T.-S. You, “Relationships between microwave permittivities of solid and pulverised plastics,” J. Phys. D: Appl. Phys. 23(3), 346–353 (1990).
[Crossref]

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
[Crossref]

Yu, D.

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
[Crossref]

Zakaria, H. A.

Zakharenko, A.

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Zentgraf, T.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

Zhang, K.-Q.

J. Hu and K.-Q. Zhang, “Electrospun nanofibers for optical applications,” in Electrospinning: Nanofabrication and Applications, (Elsevier, 2019), pp. 603–617.

Zhang, L.

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
[Crossref]

Zhang, L. G.

S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
[Crossref]

Zhang, T.

R. Nazarov, M. K. Khodzitskiy, and T. Zhang, “Comparison of mathematical models for the calculation of optical properties of composite medium in the terahertz regime,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2019), pp. 1–2.

Zhang, X.-C.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Zhao, X.

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Zhong, H.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

Zhou, G.

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

Adv. Opt. Mater. (1)

A. Camposeo, L. Persano, M. Farsari, and D. Pisignano, “Additive manufacturing: applications and directions in photonics and optoelectronics,” Adv. Opt. Mater. 7(1), 1800419 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,” Appl. Phys. Lett. 88(20), 202905 (2006).
[Crossref]

Carbon (1)

A. Ramos, I. Cameán, and A. B. García, “Graphitization thermal treatment of carbon nanofibers,” Carbon 59, 2–32 (2013).
[Crossref]

Compos. Sci. Technol. (1)

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[Crossref]

Desalination (1)

F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, “A review on electrospinning for membrane fabrication: challenges and applications,” Desalination 356, 15–30 (2015).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27(4), 547–556 (2007).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Chem. Educ. (1)

D. Swinehart, “The beer-lambert law,” J. Chem. Educ. 39(7), 333 (1962).
[Crossref]

J. Controlled Release (1)

X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, “Electrospinning of polymeric nanofibers for drug delivery applications,” J. Controlled Release 185, 12–21 (2014).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (4)

E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer graphene broadband terahertz modulators with flexible substrate,” J. Infrared, Millimeter, Terahertz Waves 39(5), 483–491 (2018).
[Crossref]

C. Jördens, K. L. Chee, I. A. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared, Millimeter, Terahertz Waves 31(2), 214–220 (2009).
[Crossref]

A. Squires, E. Constable, and R. Lewis, “3d printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

A. Squires and R. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3d printed terahertz devices,” J. Infrared, Millimeter, Terahertz Waves 39(7), 614–635 (2018).
[Crossref]

J. Nanomater. (1)

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. du Toit, and V. M. Ndesendo, “A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications,” J. Nanomater. 2013, 1–22 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (2)

S. Nelson and T.-S. You, “Relationships between microwave permittivities of solid and pulverised plastics,” J. Phys. D: Appl. Phys. 23(3), 346–353 (1990).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42(6), 065415 (2009).
[Crossref]

Macromol. Rapid Commun. (1)

G. Kim, J. Son, S. Park, and W. Kim, “Hybrid process for fabricating 3d hierarchical scaffolds combining rapid prototyping and electrospinning,” Macromol. Rapid Commun. 29(19), 1577–1581 (2008).
[Crossref]

Mater. Sci. Eng., C (1)

M. Liu, X.-P. Duan, Y.-M. Li, D.-P. Yang, and Y.-Z. Long, “Electrospun nanofibers for wound healing,” Mater. Sci. Eng., C 76, 1413–1423 (2017).
[Crossref]

Materials (1)

R. Grigorev, A. Kuzikova, P. Demchenko, A. Senyuk, A. Svechkova, A. Khamid, A. Zakharenko, and M. Khodzitskiy, “Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy,” Materials 13(1), 85 (2019).
[Crossref]

Opt. Commun. (1)

J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of thz time-domain spectroscopy signals: A study based on lactose,” Opt. Commun. 366, 386–396 (2016).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Plasmonics (1)

R. Ortuño, C. García-Meca, and A. Martínez, “Terahertz metamaterials on flexible polypropylene substrate,” Plasmonics 9(5), 1143–1147 (2014).
[Crossref]

Proc. IEEE (2)

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proc. IEEE 95(8), 1514–1527 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Prog. Polym. Sci. (1)

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog. Polym. Sci. 75, 73–107 (2017).
[Crossref]

Quant. Imag. Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imag. Med. Surg. 2(1), 33–45 (2012).
[Crossref]

Radiophys. Quantum Electron. (1)

M. Kitai, M. Nazarov, P. Nedorezova, and A. Shkurinov, “Determination of the boundary transition temperatures in polypropylene on the basis of measurements in the terahertz band,” Radiophys. Quantum Electron. 60(5), 409–416 (2017).
[Crossref]

Soviet Physics JEPT (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JEPT 2, 466–475 (1956).

Tissue Eng., Part A (1)

S.-J. Lee, M. Nowicki, B. Harris, and L. G. Zhang, “Fabrication of a highly aligned neural scaffold via a table top stereolithography 3d printing and electrospinning,” Tissue Eng., Part A 23(11-12), 491–502 (2017).
[Crossref]

Trends Biotechnol. (1)

X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Other (8)

M. Naftaly, Terahertz Metrology (Artech House, 2015).

A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” in Terahertz for Military and Security Applications IV, vol. 6212 (International Society for Optics and Photonics, 2006), p. 62120E.

S. L. Dexheimer, Terahertz spectroscopy: Principles and Applications (CRC Press, 2007).

W. Nakata and M. Suzuki, “Dielectric properties of wet snow in microwave region,” in Snow Engineering: Recent Advances: Proceedings of the third international conference, Sendai, Japan, 26-31 May 1996, (CRC Press, 1997), p. 161.

R. Nazarov, M. K. Khodzitskiy, and T. Zhang, “Comparison of mathematical models for the calculation of optical properties of composite medium in the terahertz regime,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2019), pp. 1–2.

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, “Electrospinning: Current status and future trends,” in Nano-size Polymers, (Springer, 2016), pp. 89–154.

M. Gorji, R. Bagherzadeh, and H. Fashandi, “Electrospun nanofibers in protective clothing,” in Electrospun Nanofibers, (Elsevier, 2017), pp. 571–598.

J. Hu and K.-Q. Zhang, “Electrospun nanofibers for optical applications,” in Electrospinning: Nanofabrication and Applications, (Elsevier, 2019), pp. 603–617.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. The fabrication process of the sandwich-structured composite material with PVC nanofiber layers and PP layers
Fig. 2.
Fig. 2. Scheme of THz time-domain spectrometer (TDS). FL-1 — femtosecond IR laser, M — mirror, BS — beam splitter, $\lambda$/2 —- half-wave plate, GL — Glan prism, DL — optical delay line, CH — chopper, G — THz-generator (InAs crystal locates inside of the constant magnetic field of 2T), F — Teflon filter, PM — parabolic mirror, S — sample, NC — nonlinear CdTe crystal, $\lambda$/4 — quarter-wave plate, W — Wollaston prism, BD — balanced photodiodes, LIA — Lock-in-amplifier, ADC — analog-to-digital converter.
Fig. 3.
Fig. 3. Schematic representation of the measurement. (a) vertical polarization; (b) horizontal polarization.
Fig. 4.
Fig. 4. The representation of semiaxes of ellipsoids $x_1$, $y_1$, $z_1$ in the Cartesian coordinate system
Fig. 5.
Fig. 5. Schematic representation of the modeling algorithm for the three-component material consists of PP, PVC and air. The effective complex refractive index of the PVC nanofiber layer is determined using PvS model. Afterwards, the complex refractive index of PP layer is taken into account and the effective complex refractive index of the entire composite material is calculated using CRI model
Fig. 6.
Fig. 6. The SEM image and the diameter analysis of PVC nanofiber mat
Fig. 7.
Fig. 7. Tensile stress-strain test result of PVC nanofiber mats
Fig. 8.
Fig. 8. The dispersion of the refractive index and absorption coefficient of the PVC-PP composites for vertically and horizontally polarized THz wave
Fig. 9.
Fig. 9. The comparison between the THz optical properties of the PVC-PP composites and the results of numerical simulation
Fig. 10.
Fig. 10. The dependence of the refractive index of the material on the volume fraction of PP and the difference between the experiment data and the result of numerical simulation at the frequency of 0.50 THz
Fig. 11.
Fig. 11. Schematic representation of the Rytov method
Fig. 12.
Fig. 12. The dependence of tensor components of PVC-PP composites on the volumetric content of PP. Blue lines — $\hat {\varepsilon }_{eff_x} = \hat {\varepsilon }_{eff_y}$, black and red lines — $\hat {\varepsilon }_{eff_z}$ with the vertically and horizontally polarized THz waves, respectively

Tables (3)

Tables Icon

Table 1. The thicknesses of each PVC nanofiber layer and each PP layer after the synthesis process

Tables Icon

Table 2. The porosity of PVC nanofiber mats before the synthesis process.

Tables Icon

Table 3. The comparison of the volumetric content of PVC nanofibers between Rytov method and experiment result

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P o r o s i t y = 1 ρ 1 ρ 0 ,
f p v c + a i r + f p p = 1 ,
f P V C = γ f p v c + a i r ,
f a i r = ( 1 γ ) f p v c + a i r ,
α ( v ) = 2 d ln [ | E ^ s a m p l e ( v ) | T ( v ) | E ^ r e f e r e n c e ( v ) | ]
n ( v ) = 1 + c [ ϕ s a m p l e ( v ) ϕ r e f e r e n c e ] / 2 π v d
T ( v ) = 1 R = 1 [ n ( v ) 1 ] 2 / [ n ( v ) + 1 ] 2
ε ^ e f f = ε ^ h 1 f p ( ε ^ p ε ^ h ) i = 1 3 a i ε ^ e f f + ( ε ^ p ε ^ e f f ) A i ,
A i = x 1 y 1 z 1 2 0 d s ( i 2 + s ) ( x 1 2 + s ) ( y 1 2 + s ) ( z 1 2 + s ) ,
n ^ e f f = i = 1 N f i n ^ i ,
( n ^ e f f ) = ( ( ε ^ e f f ) + ( ε ^ e f f ) 2 + ( ε ^ e f f ) 2 ) 1 2 ,
α e f f = 4 π ν c ( ( ε ^ e f f ) + ( ε ^ e f f ) 2 + ( ε ^ e f f ) 2 ) 1 2 ,
ε ^ e f f x = ε ^ e f f y = b ε ^ 1 + a ε ^ 2 a + b ,
ε ^ e f f z = ε ^ 1 ε ^ 2 ( a + b ) b ε ^ 2 + a ε ^ 1 .
ε ^ e f f z = ε ^ p v c + a i r ε ^ p p ( h p p + h p v c + a i r ) h p p ε ^ p v c + a i r + h p v c + a i r ε ^ p p ;
ε ^ e f f x = ε ^ e f f y = h p v c + a i r ε ^ p v c + a i r + h p p ε ^ p p h p p + h p v c + a i r ,
γ = 1 1 ε p v c + a i r ( ε p v c 1 ) ( 1 2 ε p v c + a i r + 1 ε p v c + a i r + ε p v c ) ,