Abstract

A digital holography interferometry was applied for in situ observation of the light-assisted domain reversal in the lithium niobate doped with MgO. The evolution of the light-assisted domain nucleation and growth was reconstructed, and we found a flat-top reversed domain state during the two stages: I. the reversed domain tip propagates in depth and progressively flattens its edge profile; II. the polarization reversal front abruptly changes shape with the formation of two fast-propagating lateral tips. According to experiments and analysis, we find a Gaussian-shaped space charge field and present a model based on a redistribution of the photo-excited carriers to explain the process of light-assisted domain reversal.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography

Simonetta Grilli, Pietro Ferraro, Melania Paturzo, Domenico Alfieri, Paolo De Natale, Marella de Angelis, Sergio De Nicola, Andrea Finizio, and Giovanni Pierattini
Opt. Express 12(9) 1832-1842 (2004)

Latent light-assisted poling of LiNbO3

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis
Opt. Express 17(21) 18681-18692 (2009)

Visualization of ferroelectric domains with coherent light

Manfred Müller, Elisabeth Soergel, and Karsten Buse
Opt. Lett. 28(24) 2515-2517 (2003)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  2. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
    [Crossref]
  3. N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
    [Crossref] [PubMed]
  4. M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003).
    [Crossref]
  5. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005).
    [Crossref]
  6. H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009).
    [Crossref]
  7. Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
    [Crossref]
  8. Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express 17(21), 18681–18692 (2009).
    [Crossref] [PubMed]
  9. C. Y. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas, and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express 18(11), 11508–11513 (2010).
    [Crossref] [PubMed]
  10. C. L. Sones, P. Ganguly, Y. J. Ying, F. Johann, E. Soergel, R. W. Eason, and S. Mailis, “Spectral and electro-optic response of UV-written waveguides in LiNbO3 single crystals,” Opt. Express 17(26), 23755–23764 (2009).
    [Crossref] [PubMed]
  11. M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys. 98(6), 064104 (2005).
    [Crossref]
  12. H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
    [Crossref]
  13. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, “In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,” Opt. Express 12(9), 1832–1842 (2004).
    [Crossref] [PubMed]
  14. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in lithium niobate crystals directly observed by digital holography,” Opt. Express 13(14), 5416–5423 (2005).
    [Crossref] [PubMed]
  15. M. Paturzo, F. Merola, and P. Ferraro, “Multi-imaging capabilities of a 2D diffraction grating in combination with digital holography,” Opt. Lett. 35(7), 1010–1012 (2010).
    [Crossref] [PubMed]
  16. V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci. 41(1), 199–210 (2006).
    [Crossref]
  17. V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004).
    [Crossref]
  18. R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
    [Crossref]
  19. C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C 2(1), 136–140 (2005).
    [Crossref]
  20. W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
    [Crossref]

2010 (3)

2009 (4)

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009).
[Crossref]

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express 17(21), 18681–18692 (2009).
[Crossref] [PubMed]

C. L. Sones, P. Ganguly, Y. J. Ying, F. Johann, E. Soergel, R. W. Eason, and S. Mailis, “Spectral and electro-optic response of UV-written waveguides in LiNbO3 single crystals,” Opt. Express 17(26), 23755–23764 (2009).
[Crossref] [PubMed]

2007 (1)

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

2006 (1)

V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci. 41(1), 199–210 (2006).
[Crossref]

2005 (4)

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys. 98(6), 064104 (2005).
[Crossref]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005).
[Crossref]

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C 2(1), 136–140 (2005).
[Crossref]

M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in lithium niobate crystals directly observed by digital holography,” Opt. Express 13(14), 5416–5423 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003).
[Crossref]

2000 (2)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

1960 (1)

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

Alfieri, D.

Broderick, N. G.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Buse, K.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
[Crossref]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009).
[Crossref]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005).
[Crossref]

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys. 98(6), 064104 (2005).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Caccavale, F.

Callejo, D.

Chen, S. L.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Cube, F.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
[Crossref]

de Angelis, M.

De Natale, P.

De Nicola, S.

Dierolf, V.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
[Crossref]

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C 2(1), 136–140 (2005).
[Crossref]

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004).
[Crossref]

Eason, R. W.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Ferraro, P.

Finizio, A.

Fujimura, M.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003).
[Crossref]

Ganguly, P.

Grilli, S.

Hanna, D. C.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Heinemeyer, U.

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys. 98(6), 064104 (2005).
[Crossref]

Hu, Q.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Johann, F.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Kong, Y. F.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Liu, D.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

Liu, H. D.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Liu, L.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

Liu, S. G.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Luan, Z.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

Luedtke, F.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
[Crossref]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Mailis, S.

Merola, F.

Miller, R. C.

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Morbiato, A.

Offerhaus, H. L.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Paturzo, M.

Peacock, A. C.

Pierattini, G.

Qu, W.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

Richardson, D. J.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Ross, G. W.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Sandmann, C.

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C 2(1), 136–140 (2005).
[Crossref]

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004).
[Crossref]

Shur, V. Y.

V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci. 41(1), 199–210 (2006).
[Crossref]

Soergel, E.

Sohmura, T.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003).
[Crossref]

Sones, C. L.

Steigerwald, H.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
[Crossref]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009).
[Crossref]

Suhara, T.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003).
[Crossref]

Valdivia, C. E.

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express 17(21), 18681–18692 (2009).
[Crossref] [PubMed]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005).
[Crossref]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Wang, W. J.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Weinreich, G.

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

Wengler, M. C.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005).
[Crossref]

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys. 98(6), 064104 (2005).
[Crossref]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Xu, J. J.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

Ying, C. Y.

Ying, Y. J.

Zervas, M. N.

Zhi, Y.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

Appl. Phys. B (1)

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010).
[Crossref]

Appl. Phys. Lett. (5)

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004).
[Crossref]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005).
[Crossref]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009).
[Crossref]

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett. 90(4), 042904 (2007).
[Crossref]

Electron. Lett. (1)

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

J. Appl. Phys. (2)

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys. 98(6), 064104 (2005).
[Crossref]

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009).
[Crossref]

J. Mater. Sci. (1)

V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci. 41(1), 199–210 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev. 117(6), 1460–1466 (1960).
[Crossref]

Phys. Rev. Lett. (1)

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C 2(1), 136–140 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The selected sequence of reconstructed three-dimensional wave-field phase distributions during the domain nucleation and growth in the LN crystal. The six frames labeled as (a) - (f) show the nucleation and growth of individual 180° domain microstructure in the wafer at different times after the application of the steady voltage (at t = 0s). The times t (in seconds) corresponding to each frame are (a) 3.6, (b)4.4, (c)4.8, (d)5.0, (e)6.8 and (f)8.6s. The polarization axis is along the c-axis.

Fig. 2
Fig. 2

The evolution of the longitudinal section in the nucleation and growth of individual 180° domain microstructure in the wafer at different times after the application of the steady voltage (at t = 0s).

Fig. 3
Fig. 3

(a) The reversed domain depth at different positions of the light spot varies with time. (b) The velocity of the reversed domain walls at different times.

Fig. 4
Fig. 4

The evolution of the space charge field produced by light excited carriers at different times after the application of the steady voltage (at t = 0s). The times t (in seconds) corresponding to each frame are (a) 4.4, (b) 5.2, (c) 5.6, (d)8.0, (e) 9.2, (f) 10.2 and (g) 19.2, separately.

Fig. 5
Fig. 5

The schematic diagram for light-assisted domain reversal process. (a) The distribution of light-excited electrons and holes. (b) The formation of a light-assisted reversed domain on –c face. (c) The reversed domain with a flat-top shape. (d) The domain tips at the periphery of spot arrive at + c surface. (e) The light-assisted domain reversal completed. The bottom line is the schematic diagram of reversed domain on the –c surface.

Metrics