Abstract

We fabricated large-aperture axis-slant quasi-phase-matching (AS-QPM) device with 8 mm x 11 mm acceptable aperture size in 2-mm-thick Mg-doped LiNbO3 crystal at 65° slant angle with 75-µm surface period. The AS-QPM has a possibility of wafer-scale-aperture device, suitable for handling high power/energy lasers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation:tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
    [CrossRef]
  3. Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser tv,” Advanced Solid-State Photonics (ASSP2009), WE1, Denver, Colorado, USA (Feb. 1–4, 2009).
  4. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
    [CrossRef]
  5. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett.34(24), 3836–3838 (2009).
    [CrossRef] [PubMed]
  6. K. Nakamura, T. Hatanaka, and H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3,” Jpn. J. Appl. Phys.40(Part 2, No. 4A), L337–L339 (2001).
    [CrossRef]
  7. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
    [CrossRef]
  8. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
    [CrossRef] [PubMed]
  9. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
    [CrossRef] [PubMed]
  10. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
    [CrossRef] [PubMed]
  11. X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009).
    [CrossRef] [PubMed]
  12. T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguide,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
    [CrossRef]
  13. J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
    [CrossRef]
  14. J. P. Fève, O. Pacaud, B. Boulanger, B. Ménaert, J. Hellström, V. Pasiskevicius, and F. Laurell, “Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal,” Opt. Lett.26(23), 1882–1884 (2001).
    [CrossRef] [PubMed]
  15. H. Ishizuki, J. Saikawa, and T. Taira, “Broadly and continuously tunable, high-energy optical parametric system by angular tuning of tilted QPM structures,” Conf. on Lasers and Electro-Optics (CLEO2009), CThZ1, Baltimore, Maryland, USA (May 31 - June 5, 2009).
  16. D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” in Conference on Lasers and Electro-Optics (CLEO2004) CThU2, San Francisco, CA, USA (May 16–21, 2004).
  17. D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett.32(8), 961–963 (2007).
    [CrossRef] [PubMed]
  18. Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-matching,” Phys. Rev. A76(6), 063817 (2007).
    [CrossRef]
  19. H. Ishizuki and T. Taira, “Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,” Opt. Express16(21), 16963–16970 (2008).
    [CrossRef] [PubMed]
  20. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B14(12), 3319–3322 (1997).
    [CrossRef]

2009 (2)

2008 (2)

2007 (5)

D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett.32(8), 961–963 (2007).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

2005 (1)

2003 (2)

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguide,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

2001 (2)

K. Nakamura, T. Hatanaka, and H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3,” Jpn. J. Appl. Phys.40(Part 2, No. 4A), L337–L339 (2001).
[CrossRef]

J. P. Fève, O. Pacaud, B. Boulanger, B. Ménaert, J. Hellström, V. Pasiskevicius, and F. Laurell, “Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal,” Opt. Lett.26(23), 1882–1884 (2001).
[CrossRef] [PubMed]

1997 (1)

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation:tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Avetisyan, Y.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguide,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

Baltuska, A.

Beigang, R.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Boulanger, B.

Butkus, R.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation:tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Das, R.

Deng, Y.

Ebrahim-Zadeh, M.

Fejer, M. M.

Fève, J. P.

Fuji, T.

Fujii, M.

Gu, X.

Hatanaka, T.

K. Nakamura, T. Hatanaka, and H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3,” Jpn. J. Appl. Phys.40(Part 2, No. 4A), L337–L339 (2001).
[CrossRef]

Hellström, J.

Hum, D. S.

Ishii, N.

Ishizuki, H.

Ito, H.

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguide,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

K. Nakamura, T. Hatanaka, and H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3,” Jpn. J. Appl. Phys.40(Part 2, No. 4A), L337–L339 (2001).
[CrossRef]

Jundt, D.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation:tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kienberger, R.

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

Kobayashi, T.

Krausz, F.

Kumar, S. C.

Kurimura, S.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

Laurell, F.

L'huillier, J. A.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation:tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Marcus, G.

Ménaert, B.

Metzger, T.

Miyazaki, M.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Nakamura, K.

K. Nakamura, T. Hatanaka, and H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3,” Jpn. J. Appl. Phys.40(Part 2, No. 4A), L337–L339 (2001).
[CrossRef]

Pacaud, O.

Pasiskevicius, V.

Pervak, V.

Petit, Y.

Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

Route, R. K.

Saikawa, J.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Samanta, G. K.

Segonds, P.

Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

Small, D. L.

Suhara, T.

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguide,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

Taira, T.

X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, “Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,” Opt. Express16(21), 16963–16970 (2008).
[CrossRef] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

Teisset, C.

Theuer, M.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Torosyan, G.

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Zelmon, D. E.

Appl. Phys. B (1)

J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate - Part 1: Theory,” Appl. Phys. B86(2), 185–196 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguide,” IEEE J. Quantum Electron.39(1), 166–171 (2003).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation:tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Nakamura, T. Hatanaka, and H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3,” Jpn. J. Appl. Phys.40(Part 2, No. 4A), L337–L339 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett.34(24), 3836–3838 (2009).
[CrossRef] [PubMed]

J. P. Fève, O. Pacaud, B. Boulanger, B. Ménaert, J. Hellström, V. Pasiskevicius, and F. Laurell, “Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled KTiOPO4 crystal,” Opt. Lett.26(23), 1882–1884 (2001).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett.32(8), 961–963 (2007).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (1)

Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

Other (3)

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser tv,” Advanced Solid-State Photonics (ASSP2009), WE1, Denver, Colorado, USA (Feb. 1–4, 2009).

H. Ishizuki, J. Saikawa, and T. Taira, “Broadly and continuously tunable, high-energy optical parametric system by angular tuning of tilted QPM structures,” Conf. on Lasers and Electro-Optics (CLEO2009), CThZ1, Baltimore, Maryland, USA (May 31 - June 5, 2009).

D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” in Conference on Lasers and Electro-Optics (CLEO2004) CThU2, San Francisco, CA, USA (May 16–21, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Various types of QPM structure. (a) Right-angled QPM, (b) Conventional slant structure (slant QPM or tilted QPM), (c) Axis-slant QPM.

Fig. 2
Fig. 2

(a),(b). Schematic views of axis-slant QPM

Fig. 3
Fig. 3

Effect of wedged structure in right-angled QPM. (a) Optimum, (b) Wedged, (c) Badly wedged.

Fig. 4
Fig. 4

Effect of wedged structure in axis-slant QPM. (a) Optimum, (b) Wedged.

Fig. 5
Fig. 5

Measured inversion field. (a) Dependence on slant angle, (b) Dependence on crystal temperature.

Fig. 6
Fig. 6

Y-face photograph of the obtained axis-slant QPM structure in 65° slant MgLN with thickness d1 = 2 mm. Surface QPM period Λ1 = 75 µm.

Fig. 7
Fig. 7

(a) Set up of 5th-QPM-SHG, (b) Typical input/output characteristics of 5th-QPM-SHG.

Fig. 8
Fig. 8

Measured SH power dependence along (a) y-axis, (b) XS-axis.

Metrics