Abstract

Compact infrared filters—either to reject infrared radiation of a specific circular-polarization state in a wide band or to transmit the same radiation in a narrow band—for the IR-A and IR-B spectral regimes were designed and fabricated by thermal evaporation of chalcogenide glass of nominal composition Ge28Sb12Se60 in a vacuum chamber.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys.195, 195–204 (1965).
    [CrossRef]
  2. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
    [CrossRef]
  3. K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B246, 1744–1757 (2009).
    [CrossRef]
  4. A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw–Hill, 2010).
  5. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011).
    [CrossRef]
  6. A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.
  7. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
    [CrossRef]
  8. R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007).
    [CrossRef]
  9. R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
    [CrossRef]
  10. H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-free Approach (McGraw–Hill, 1983).
  11. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000).
    [CrossRef]
  12. A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun.275, 283–287 (2007).
    [CrossRef]
  13. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
    [CrossRef]
  14. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002).
    [CrossRef] [PubMed]
  15. J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E12, 553–564 (2003).
    [CrossRef]
  16. J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002).
    [CrossRef]
  17. J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt.53, 2763–2783 (2006).
    [CrossRef]
  18. F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun.215, 79–92 (2003).
    [CrossRef]
  19. F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B83, 075115 (2011).
    [CrossRef]
  20. R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
    [CrossRef]
  21. I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt.37, 2653–2659 (1998).
    [CrossRef]
  22. I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A17, 2928–2932 (1999).
    [CrossRef]
  23. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt.38, 3621–3625 (1999).
    [CrossRef]
  24. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt.39, 642–649 (2000).
    [CrossRef]
  25. S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B25, 2611–2615 (2007).
    [CrossRef]
  26. B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys.57, 821 (1989).
    [CrossRef]
  27. Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971).
    [CrossRef] [PubMed]
  28. H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
    [CrossRef]
  29. I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
    [CrossRef]
  30. R. Dror, B. Sfez, Sh. Y. Goldin, and A. Cashingad, “Etching of photosensitive chalcogenide glasses: experiments and simulations,” Opt. Express15, 12539–12547 (2007).
    [CrossRef] [PubMed]
  31. S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007).
    [CrossRef]
  32. D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, 2003).
  33. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
    [CrossRef]
  34. T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J.2, 92–101 (2010).
    [CrossRef]

2011 (2)

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011).
[CrossRef]

F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B83, 075115 (2011).
[CrossRef]

2010 (1)

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J.2, 92–101 (2010).
[CrossRef]

2009 (2)

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B246, 1744–1757 (2009).
[CrossRef]

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

2007 (5)

A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun.275, 283–287 (2007).
[CrossRef]

R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007).
[CrossRef]

R. Dror, B. Sfez, Sh. Y. Goldin, and A. Cashingad, “Etching of photosensitive chalcogenide glasses: experiments and simulations,” Opt. Express15, 12539–12547 (2007).
[CrossRef] [PubMed]

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007).
[CrossRef]

S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B25, 2611–2615 (2007).
[CrossRef]

2006 (1)

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt.53, 2763–2783 (2006).
[CrossRef]

2004 (1)

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

2003 (3)

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun.215, 79–92 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E12, 553–564 (2003).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

2002 (3)

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002).
[CrossRef]

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002).
[CrossRef] [PubMed]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

2001 (1)

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

2000 (3)

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt.39, 642–649 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000).
[CrossRef]

1999 (2)

I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A17, 2928–2932 (1999).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt.38, 3621–3625 (1999).
[CrossRef]

1998 (1)

1997 (1)

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

1989 (1)

B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys.57, 821 (1989).
[CrossRef]

1971 (1)

Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971).
[CrossRef] [PubMed]

1965 (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys.195, 195–204 (1965).
[CrossRef]

Arnold, M.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

Bhattacharya, K.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011).
[CrossRef]

Cashingad, A.

Chakraborty, A. K.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011).
[CrossRef]

Chen, H. C.

H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-free Approach (McGraw–Hill, 1983).

Cheng, A.

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

Chirgadze, Yu. N.

Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971).
[CrossRef] [PubMed]

Dror, R.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

Frankel, C.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

Geddes, J. B.

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt.53, 2763–2783 (2006).
[CrossRef]

Gehrke, T.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

Genack, A. Z.

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002).
[CrossRef] [PubMed]

Goldin, Sh. Y.

Hazel, J.

Hilton, A. R.

A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw–Hill, 2010).

Hodgkinson, I.

Hodgkinson, I. J.

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt.37, 2653–2659 (1998).
[CrossRef]

Horn, M. W.

S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B25, 2611–2615 (2007).
[CrossRef]

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007).
[CrossRef]

Hu, B. Y.-K.

B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys.57, 821 (1989).
[CrossRef]

Knight, B.

Kopp, V. I.

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002).
[CrossRef] [PubMed]

Lakhtakia, A.

F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B83, 075115 (2011).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J.2, 92–101 (2010).
[CrossRef]

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun.275, 283–287 (2007).
[CrossRef]

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt.53, 2763–2783 (2006).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun.215, 79–92 (2003).
[CrossRef]

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt.39, 642–649 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[CrossRef]

Lobachev, V. M.

Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971).
[CrossRef] [PubMed]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J.2, 92–101 (2010).
[CrossRef]

Martín-Palma, R. J.

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007).
[CrossRef]

Mattox, D. M.

D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, 2003).

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.

Messier, R.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[CrossRef]

Nie, Q.

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

Nielsen, S.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys.195, 195–204 (1965).
[CrossRef]

Otaño, W.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

Pantano, C. G.

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007).
[CrossRef]

Pursel, S.

S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B25, 2611–2615 (2007).
[CrossRef]

Pursel, S. M.

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007).
[CrossRef]

Robbie, K.

Ryan, J. V.

R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007).
[CrossRef]

Saha, A.

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011).
[CrossRef]

Savage, J. A.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys.195, 195–204 (1965).
[CrossRef]

Schmidtke, J.

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E12, 553–564 (2003).
[CrossRef]

Sfez, B.

Sherwin, J. A.

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

Shimakawa, K.

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B246, 1744–1757 (2009).
[CrossRef]

Stille, W.

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E12, 553–564 (2003).
[CrossRef]

Tanaka, K.

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B246, 1744–1757 (2009).
[CrossRef]

Tao, W.

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

Venugopal, V. C.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

Venyaminov, S. Yu.

Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971).
[CrossRef] [PubMed]

Wang, F.

F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B83, 075115 (2011).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun.215, 79–92 (2003).
[CrossRef]

Wang, J.

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

Wu, Q.

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000).
[CrossRef]

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt.39, 642–649 (2000).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt.38, 3621–3625 (1999).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A17, 2928–2932 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt.37, 2653–2659 (1998).
[CrossRef]

Xia, H.

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

Xu, J.

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

Zhang, F.

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

Zhang, J.

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

Am. J. Phys. (1)

B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys.57, 821 (1989).
[CrossRef]

Appl. Opt. (3)

Biopolymers (1)

Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers10, 809–826 (1971).
[CrossRef] [PubMed]

Eur. Phys. J. E (1)

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E12, 553–564 (2003).
[CrossRef]

IEEE Photon. J. (1)

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J.2, 92–101 (2010).
[CrossRef]

Infrared Phys. (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys.195, 195–204 (1965).
[CrossRef]

J. Mod. Opt. (1)

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt.53, 2763–2783 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330, 1–12 (2003).
[CrossRef]

J. Vac. Sci. Technol. A (3)

R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A25, 587–591 (2007).
[CrossRef]

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A15, 2148–2152 (1997).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A17, 2928–2932 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B25, 2611–2615 (2007).
[CrossRef]

Opt. Commun. (6)

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun.210, 201–211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun.194, 33–46 (2001).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun.215, 79–92 (2003).
[CrossRef]

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun.2009, 369–375 (2002).
[CrossRef]

A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun.275, 283–287 (2007).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun.184, 57–66 (2000).
[CrossRef]

Opt. Eng. (3)

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng.39, 1863–1868 (2000).
[CrossRef]

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng.50, 034004 (2011).
[CrossRef]

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng.46, 040507 (2007).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater.27, 279–283 (2004).
[CrossRef]

Phys. Rev. B (1)

F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B83, 075115 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett.89, 033901 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B246, 1744–1757 (2009).
[CrossRef]

Thin Solid Films (1)

R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films517, 5553–5556 (2009).
[CrossRef]

Other (5)

H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-free Approach (McGraw–Hill, 1983).

A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[CrossRef]

A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw–Hill, 2010).

D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated transmittances TRR, TLL, TLR, and TRL as functions of the free-space wavelength λ0 when a plane wave is normally incident on a chiral STF without a central phase defect. The relevant parameters of the chiral STF are as follows: N = 8, h = +1, Ω = 350 nm, ɛc = 2.89, ɛd = 3.24, and γ+γ = 0. Interchange the subscripts L and R in the transmittances for h = −1.

Fig. 2
Fig. 2

Same as Fig. 1, except that γ+γ = 90°.

Fig. 3
Fig. 3

Cross-sectional SEM images of (a) WRF and (b) RHF. The arrow indicates the location of the central 90°-twist defect in RHF.

Fig. 4
Fig. 4

Measured transmittances TRR, TLL, TLR, and TRL of the device labeled as WRF (Ω = 350 nm) as functions of the free-space wavelength λ0. The device was fabricated of chalcogenide glass with nominal composition Ge28Sb12Se60 and its helical columns have 2N = 16 complete turns. Data were acquired at 2-nm λ0-intervals.

Fig. 5
Fig. 5

Same as Fig. 4, except for the device labeled as RHF (Ω = 400 nm).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ɛ _ _ ( z ) = ɛ 0 S _ _ z ( z ) S _ _ y ( χ ) [ ɛ a u ^ _ z u ^ _ z + ɛ b u ^ _ x u ^ _ x + ɛ c u ^ _ y u ^ _ y ] S _ _ y 1 ( χ ) S _ _ z 1 ( z ) , z [ L , L ] ,
S _ _ y ( χ ) = u ^ _ y u ^ _ y + ( u ^ _ x u ^ _ x + u ^ _ z u ^ _ z ) cos χ + ( u ^ _ z u ^ _ x u ^ _ x u ^ _ z ) sin χ
S _ _ z ( z ) = ( u ^ _ x u ^ _ x + u ^ _ y u ^ _ y ) cos [ π Ω z + γ ± ] + h ( u ^ _ y u ^ _ x u ^ _ x u ^ _ y ) sin [ π Ω z + γ ± ] + u ^ _ z u ^ _ z , { z > 0 z < 0 ,
ɛ d = ɛ a ɛ b / ( ɛ a cos 2 χ + ɛ b sin 2 χ ) 1 / 2 ,
n Br = ( 1 / 2 ) ( ɛ c + ɛ d )

Metrics