A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50, 034004 (2011).
[Crossref]
F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B 83, 075115 (2011).
[Crossref]
T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[Crossref]
K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
[Crossref]
R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A 25, 587–591 (2007).
[Crossref]
S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng. 46, 040507 (2007).
[Crossref]
S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[Crossref]
R. Dror, B. Sfez, Sh. Y. Goldin, and A. Cashingad, “Etching of photosensitive chalcogenide glasses: experiments and simulations,” Opt. Express 15, 12539–12547 (2007).
[Crossref]
[PubMed]
J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[Crossref]
J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]
J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 2009, 369–375 (2002).
[Crossref]
V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[Crossref]
[PubMed]
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys. 57, 821 (1989).
[Crossref]
Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809–826 (1971).
[Crossref]
[PubMed]
J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys. 195, 195–204 (1965).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50, 034004 (2011).
[Crossref]
A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50, 034004 (2011).
[Crossref]
H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-free Approach (McGraw–Hill, 1983).
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809–826 (1971).
[Crossref]
[PubMed]
A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[Crossref]
[PubMed]
A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw–Hill, 2010).
I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[Crossref]
I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[Crossref]
I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 2009, 369–375 (2002).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[Crossref]
S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[Crossref]
S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng. 46, 040507 (2007).
[Crossref]
B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys. 57, 821 (1989).
[Crossref]
V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[Crossref]
[PubMed]
F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B 83, 075115 (2011).
[Crossref]
T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
[Crossref]
S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng. 46, 040507 (2007).
[Crossref]
J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[Crossref]
F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[Crossref]
J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 2009, 369–375 (2002).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.
A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[Crossref]
Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809–826 (1971).
[Crossref]
[PubMed]
T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A 25, 587–591 (2007).
[Crossref]
D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, 2003).
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys. 195, 195–204 (1965).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A 25, 587–591 (2007).
[Crossref]
S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[Crossref]
S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng. 46, 040507 (2007).
[Crossref]
R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A 25, 587–591 (2007).
[Crossref]
A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50, 034004 (2011).
[Crossref]
J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys. 195, 195–204 (1965).
[Crossref]
J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[Crossref]
J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 2009, 369–375 (2002).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[Crossref]
J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[Crossref]
K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809–826 (1971).
[Crossref]
[PubMed]
F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B 83, 075115 (2011).
[Crossref]
F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[Crossref]
I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[Crossref]
I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
B. Y.-K. Hu, “Kramers–Kronig in two lines,” Am. J. Phys. 57, 821 (1989).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[Crossref]
I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[Crossref]
I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[Crossref]
Yu. N. Chirgadze, S. Yu. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809–826 (1971).
[Crossref]
[PubMed]
J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[Crossref]
T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[Crossref]
J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μ — A state of the art review,” Infrared Phys. 195, 195–204 (1965).
[Crossref]
J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]
R. J. Martín-Palma, J. V. Ryan, and C. G. Pantano, “Spectral behavior of the optical constants in the visible/NIR of GeSbSe chalcogenide thin films grown at glancing angle,” J. Vac. Sci. Technol. A 25, 587–591 (2007).
[Crossref]
R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño, and A. Lakhtakia, “Engineered sculptured nematic thin films,” J. Vac. Sci. Technol. A 15, 2148–2152 (1997).
[Crossref]
I. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999).
[Crossref]
S. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007).
[Crossref]
F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[Crossref]
J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 2009, 369–375 (2002).
[Crossref]
A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[Crossref]
A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]
I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, “Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances,” Opt. Commun. 210, 201–211 (2002).
[Crossref]
S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Tuning of sculptured-thin-film spectral-hole filters by postdeposition etching,” Opt. Eng. 46, 040507 (2007).
[Crossref]
Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[Crossref]
A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Reconfigurable achromatic half-wave and quarter-wave retarder in near infrared using crystalline quartz plates,” Opt. Eng. 50, 034004 (2011).
[Crossref]
H. Xia, W. Tao, J. Wang, J. Zhang, and Q. Nie, “Sol-gel derived solid chiral materials and their optical activity,” Opt. Mater. 27, 279–283 (2004).
[Crossref]
F. Wang and A. Lakhtakia, “Complete exhibition of defect-mode resonance despite dissipation in structurally chiral materials,” Phys. Rev. B 83, 075115 (2011).
[Crossref]
V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[Crossref]
[PubMed]
K. Tanaka and K. Shimakawa, “Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B 246, 1744–1757 (2009).
[Crossref]
R. J. Martín-Palma, F. Zhang, A. Lakhtakia, A. Cheng, J. Xu, and C. G. Pantano, “Retardance of chalcogenide thin films grown by the oblique-angle-deposition technique,” Thin Solid Films 517, 5553–5556 (2009).
[Crossref]
H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-free Approach (McGraw–Hill, 1983).
A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 230–236.
A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[Crossref]
A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw–Hill, 2010).
D. M. Mattox, The Foundations of Vacuum Coating Technology (Noyes Publications, 2003).