Abstract

We report on novel focused ion beam fabrication techniques that can greatly improve the optical performance of photonic crystal structures. The finite depth and conicity effects of holes and trenches in Lithium Niobate (LN) photonic crystals have been theoretically analyzed, showing that the conicity causes refraction into the bulk sample, resulting in high transmission loss and no useful spectral features. The techniques for reducing the conicity angle from 25° to 5° were explained for the focused ion beam (FIB) milled structures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sriram and S. A. Kingsley, “Sensitivity enhancements to photonic electric field sensor,” SPIE Defense & Security Symposium, Orlando, FL, 12–16 April 2004.
  2. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
    [CrossRef]
  3. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
    [CrossRef]
  4. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
    [CrossRef]
  5. G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
    [CrossRef]
  6. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
    [CrossRef]
  7. M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
    [CrossRef]
  8. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
    [CrossRef] [PubMed]
  9. J. Ouyang, X. Wang, and M. Qi, “Meep,” DOI: (2011).
    [CrossRef]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  11. Srico Inc., 2724 Sawbury Blvd., Columbus, OH 43235, USA.
  12. N. J. Bassom and T. Mai, “Modeling and optimization XeF2-enhanced FIB milling of Silicon,” in Proc. 25th International Symposium for Testing and Failure Analysis, Santa Clara, CA, 255–261 (1999).
  13. H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992).
    [CrossRef]
  14. J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009).
    [CrossRef]
  15. G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008).
    [CrossRef] [PubMed]
  16. D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
    [CrossRef]
  17. A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
    [CrossRef]
  18. K. Ghoumid, R. Ferriere, B. E. Benkelfat, B. Guizal, and T. Gharbi, “Optical performance of Bragg gratings fabricated in Ti:LiNbO3 waveguides by focused ion beam milling,” J. Lightwave Technol.28, 3488–3493 (2010).
  19. L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
    [CrossRef]
  20. D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
    [CrossRef]
  21. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003).
    [CrossRef]
  22. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32(5), 533–535 (2007).
    [CrossRef] [PubMed]

2010

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

K. Ghoumid, R. Ferriere, B. E. Benkelfat, B. Guizal, and T. Gharbi, “Optical performance of Bragg gratings fabricated in Ti:LiNbO3 waveguides by focused ion beam milling,” J. Lightwave Technol.28, 3488–3493 (2010).

2009

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
[CrossRef]

J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009).
[CrossRef]

2008

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008).
[CrossRef] [PubMed]

2007

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32(5), 533–535 (2007).
[CrossRef] [PubMed]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

2006

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
[CrossRef]

2005

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
[CrossRef]

M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

2003

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003).
[CrossRef]

1992

H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992).
[CrossRef]

Baida, F. I.

M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Baldenberger, G.

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

Benkelfat, B. E.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Bernal, M. P.

G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express16(9), 6302–6316 (2008).
[CrossRef] [PubMed]

M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Bettiol, A. A.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Brunken, S.

D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
[CrossRef]

Burr, G. W.

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
[CrossRef]

Choquette, K. D.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
[CrossRef]

Courjal, N.

M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Danner, A. J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
[CrossRef]

Dimov, S.

J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009).
[CrossRef]

Dispenza, M.

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

Diziain, S.

Enokihara, A.

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

Farjadpour, A.

Ferriere, R.

Fiorello, A.

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

Foglietti, V.

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

Genereux, F.

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

Gharbi, T.

Ghoumid, K.

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

Guizal, B.

Hermann, H.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

Hoyle, R. T.

J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009).
[CrossRef]

Hu, H.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

Hukriede, J.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Iwamoto, T.

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Kettle, J.

J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009).
[CrossRef]

Kim, Y. K.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
[CrossRef]

Kip, D.

D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
[CrossRef]

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003).
[CrossRef]

Komano, H.

H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992).
[CrossRef]

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

Milenin, A. P.

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

Murata, H.

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

Nakamura, H.

H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992).
[CrossRef]

Ogasawara, M.

H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992).
[CrossRef]

Okamura, Y.

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Ouyang, J.

J. Ouyang, X. Wang, and M. Qi, “Meep,” DOI: (2011).
[CrossRef]

Pierno, L.

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

Pruessner, M. W.

Qi, M.

J. Ouyang, X. Wang, and M. Qi, “Meep,” DOI: (2011).
[CrossRef]

Rabinovich, W. S.

Raftery, J. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
[CrossRef]

Ricken, R.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

Rodriguez, A.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett.31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

Roussey, M.

M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Runde, D.

D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
[CrossRef]

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003).
[CrossRef]

Rüter, C. E.

D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
[CrossRef]

Secchi, A.

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

Si, G.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

Sohler, W.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

Stievater, T. H.

Suzuki, A.

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

Teng, J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Teo, E. J.

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Vallee, R.

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

Wang, X.

J. Ouyang, X. Wang, and M. Qi, “Meep,” DOI: (2011).
[CrossRef]

Wehrspohn, R. B.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

Appl. Phys. B

D. Runde, S. Brunken, C. E. Rüter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Appl. Phys. B86(1), 91–95 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Roussey, M. P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. Kettle, R. T. Hoyle, and S. Dimov, “Fabrication of step-and-flash imprint lithography (S-FIL) templates using XeF2 enhanced focused ion-beam etching,” Appl. Phys., A Mater. Sci. Process.96(4), 819–825 (2009).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron.11(6), 1292–1298 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17(7), 1453–1455 (2005).
[CrossRef]

J. Appl. Phys.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, and V. Foglietti, “A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography,” J. Opt. A, Pure Appl. Opt.10(6), 064017 (2008).
[CrossRef]

J. Phys. D Appl. Phys.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys.36(3), R1–R16 (2003).
[CrossRef]

J. Vac. Sci. Technol. A

H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, “Plasma etching of proton-exchanged lithium niobate,” J. Vac. Sci. Technol. A24(4), 1012–1015 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

G. Si, E. J. Teo, A. A. Bettiol, J. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

H. Nakamura, H. Komano, and M. Ogasawara, “Focused ion beam assisted etching of quartz in XeF2 without transmittence reduction for phase shifting mask repair,” Jpn. J. Appl. Phys.31(Part 1, No. 12B), 4465–4467 (1992).
[CrossRef]

Microelectron. Eng.

A. Suzuki, T. Iwamoto, A. Enokihara, H. Murata, and Y. Okamura, “Fabrication of Bragg gratings with deep grooves in LiNbO3 ridge optical waveguide,” Microelectron. Eng.85(5-6), 1417–1420 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Srico Inc., 2724 Sawbury Blvd., Columbus, OH 43235, USA.

N. J. Bassom and T. Mai, “Modeling and optimization XeF2-enhanced FIB milling of Silicon,” in Proc. 25th International Symposium for Testing and Failure Analysis, Santa Clara, CA, 255–261 (1999).

S. Sriram and S. A. Kingsley, “Sensitivity enhancements to photonic electric field sensor,” SPIE Defense & Security Symposium, Orlando, FL, 12–16 April 2004.

J. Ouyang, X. Wang, and M. Qi, “Meep,” DOI: (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Simulation result of the transmission spectrum within 1-2 microns for the triangular array of holes. (b) The tilted SEM image shows the array of holes centered on the WG. (c) The output of the simulation–dielectric image

Fig. 2
Fig. 2

FIB milling of test holes in LN. (a) Holes milled with different dwell times without using XeF2 (b) Slight improvement of a hole depth after using XeF2 assisted milling.

Fig. 3
Fig. 3

Cross-sectional image of the holes milled with high beam current with exposures from 200 fC up to 560 fC with linear increments of 40fC in each step.

Fig. 4
Fig. 4

(a) A pattern with an array of holes for a line defect PC structure. (b) Test holes milled with high beam current of 2.8 nA (c) Test holes milled with low beam current of 93 pA.

Fig. 5
Fig. 5

Bragg gratings with varying trench depths from 1 to 3 microns.

Fig. 6
Fig. 6

(a, b) Bragg gratings with periodicity of 1.876 microns (a) and 1.800 microns (b) Both are patterned with different beam current. As expected, lower beam gives finer trench width. (c) Fabry-Perot 1D PCs patterned on 3 different LN WGs. Each cavity has a gap of 40, 60 and 80 microns. (d) The inset SEM image shows one side of Fabry-Perot PC acting as a mirror. (e) Cartoon representation of light input and output through the PC structure along the WG.

Fig. 7
Fig. 7

Electro-optical measurements of periodic air trenches (Bragg grating) in LN WG.

Fig. 8
Fig. 8

The cross-sectional view of air trenches. (a) The cross sectional view when the side pockets are milled prior to the milling of trenches by using beam exposures similar to trenches in (b). The cuts are of reduced conicity and greater depth.

Fig. 9
Fig. 9

(a) 1D PC and (b) two cavity Fabry-Perot structure with side-pockets. (c) A close-up view of Fabry Perot mirrors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ= mλ 2n
Δλ= λ B 2 nL 1+( κL π )

Metrics