Abstract

Semiconductor superlattice micro-/nanowires could greatly increase the versatility and power of modulating electronic or excitonic, and photonic transport, and related optical properties. In this paper we report the synthesis of alloyed semiconductor superlattice microwires (SMs) of CdS1-xSex/Sn: CdS1-xSex based on the mciro-environmental controlled co-evaporation technique. The alloyed SMs can produce color-tunable multimode emission with wavelength from 513 nm to 596 nm by controlling the composition x from 0 to 0.4. In addition, the alloyed segments in the superlattices form many optical microcavities in queue which can lead to the coupled optical cavities which confine both excitons and photons, producing multiple cavity emission modes. This structure may be used in color-tunable nonlinear optical devices, and study light-matter interaction.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lieber, “Nanowire superlattices,” Nano Lett.2(2), 81–82 (2002).
    [CrossRef]
  2. R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
    [CrossRef] [PubMed]
  3. X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008).
    [CrossRef] [PubMed]
  4. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
    [CrossRef]
  5. D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
    [CrossRef]
  6. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  7. Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002).
    [CrossRef]
  8. M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
    [CrossRef]
  9. R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
    [CrossRef]
  10. G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010).
    [CrossRef] [PubMed]
  11. Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
    [CrossRef]
  12. H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
    [CrossRef]
  13. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  14. Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
    [CrossRef]
  15. A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
    [CrossRef] [PubMed]
  16. G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
    [CrossRef]
  17. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008).
    [CrossRef]

2011 (1)

2010 (2)

G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010).
[CrossRef] [PubMed]

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

2009 (3)

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

2008 (2)

X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008).
[CrossRef]

2007 (1)

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

2005 (2)

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

2002 (5)

C. M. Lieber, “Nanowire superlattices,” Nano Lett.2(2), 81–82 (2002).
[CrossRef]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002).
[CrossRef]

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
[CrossRef]

1999 (1)

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Alivisatos, A. P.

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Ambrico, M.

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Björk, M. T.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Cao, C. B.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Capozzi, V.

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Dai, G. Z.

G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010).
[CrossRef] [PubMed]

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Demchenko, D. O.

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Deppert, K.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Deych, L. I.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Dierolf, V.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Dou, X. C.

X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008).
[CrossRef] [PubMed]

Erdonmez, C. K.

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Fan, R.

Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002).
[CrossRef]

Freeouf, J. L.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
[CrossRef]

Fu, L. M.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Geng, C. Y.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Goldberg, D.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Huang, G. S.

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Huo, J.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
[CrossRef]

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lee, C. S.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Lee, S. T.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Lei, H. C.

X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008).
[CrossRef] [PubMed]

Li, G. H.

X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008).
[CrossRef] [PubMed]

Li, X.-H.

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Li, Y.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Lieber, C. M.

C. M. Lieber, “Nanowire superlattices,” Nano Lett.2(2), 81–82 (2002).
[CrossRef]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Ligonzo, T.

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Lisyansky, A. A.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Liu, G.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Liu, R. B.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Liu, Y. K.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Magnusson, M. H.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Menon, V. M.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Miner, B.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
[CrossRef]

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008).
[CrossRef]

Ohlsson, B. J.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Oktyabrsky, S.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Pagliara, S.

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Pan, A. L.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Penn, S. T.

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Perna, G.

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Persson, I.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Poplawsky, J. D.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Robinson, R. D.

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Sadtler, B.

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Samuelson, L.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Sass, T. A.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Shan, Y. Y.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Shi, Z.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Solanki, R.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
[CrossRef]

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008).
[CrossRef]

Tansu, N.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Thelander, C.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Tokranov, V.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Wallenberg, L. R.

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Wan, Q.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wang, L. W.

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Wang, Z. L.

G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010).
[CrossRef] [PubMed]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002).
[CrossRef]

Yakimov, M.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Yan, R. X.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yang, H.

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Yang, P.

Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002).
[CrossRef]

Yang, P. D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yu, R. C.

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Zapien, J. A.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Zhang, J.

Zhang, J. P.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Zhang, Q. L.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Zhang, Y. H.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Zhao, H.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

Zhou, C. J.

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Zou, B. S.

G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010).
[CrossRef] [PubMed]

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002).
[CrossRef]

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009).
[CrossRef]

J. Am. Chem. Soc. (2)

G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010).
[CrossRef] [PubMed]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005).
[CrossRef] [PubMed]

Nano Lett. (4)

X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008).
[CrossRef] [PubMed]

C. M. Lieber, “Nanowire superlattices,” Nano Lett.2(2), 81–82 (2002).
[CrossRef]

Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002).
[CrossRef]

M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002).
[CrossRef]

Nano Res. (1)

Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010).
[CrossRef]

Nat. Photonics (3)

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Nature (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Science (1)

R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007).
[CrossRef] [PubMed]

Thin Solid Films (1)

G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of the as-grown sample collected at ~650°C (a) and ~800°C (b). Inset in (a) and (b) are the magnification SEM of a typical sample. (c) and (d) are the typical bright-field optical image of a single superlattice microwire. (e), (f) the position dependent line EDS profile of the superlattice microwire with different composition.

Fig. 2
Fig. 2

XRD patterns of the samples. Curves (a)-(d) are for the sample at the deposition position with gradually increasing temperature. For comparing, enlarged spectra of the diffraction peak in the ranges of 23°–30° is showed in right figure (a1)-(d1). Indicated in the figure is the composition x calculated from the XRD.

Fig. 3
Fig. 3

(a)-(d) Dark-field PL images of CdS1-xSex/Sn: CdS1-xSex SM with x≈0, 0.1, 0.2, 0.4. The inset is corresponding bright-field optical images. (e) The normalized Micro-PL spectrums measured in (a)-(d).

Fig. 4
Fig. 4

Typical micro-PL spectrum of a single binary CdS wire (a) and an alloyed CdS0.78Se0.22 superlattice microwire (b) at the same excitation power, the emission intensity for alloyed microwire is about ten times higher than the binary CdS wire. Excitation laser line is 488 nm.

Fig. 5
Fig. 5

(a) The bright-field image, (b) dark-field PL image and (c) Micro-PL spectrum of an individual CdS0.85Se0.15/Sn: CdS0.85Se0.15 SM. (d1)-(d4) PL mapping image of peak (1-4) in (c).

Metrics