Abstract

The role of the optical filamentation of ultra-short infrared pulses at 800nm in the inscription of highly reflective and low loss fundamental order fiber Bragg gratings is investigated. The onset of the filamentation process is first evidenced through the observation of the spectra of both supercontinuum generation and plasma emission as well as through the precise measurement of the plasma-induced refractive index change. Typical samples of FBG obtained with this approach are presented.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [CrossRef] [PubMed]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  4. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
    [CrossRef]
  5. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [CrossRef] [PubMed]
  6. E. Fertein, C. Przygodzki, H. Delbarre, A. Hidayat, M. Douay, and P. Niay, “Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810cm,” Appl. Opt. 40(21), 3506–3508 (2001).
    [CrossRef] [PubMed]
  7. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [CrossRef]
  8. K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
    [CrossRef]
  9. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28(22), 2171–2173 (2003).
    [CrossRef] [PubMed]
  10. M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400 nm femtosecond pulses and a phase-mask,” Opt. Express 17(21), 18887–18893 (2009).
    [CrossRef] [PubMed]
  11. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [CrossRef] [PubMed]
  12. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
    [CrossRef]
  13. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [CrossRef] [PubMed]
  14. R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
    [CrossRef] [PubMed]
  15. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17(5), 3285–3290 (2009).
    [CrossRef] [PubMed]
  16. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [CrossRef] [PubMed]
  17. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [CrossRef] [PubMed]
  18. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22(5), 304–306 (1997).
    [CrossRef] [PubMed]
  19. O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22(17), 1332–1334 (1997).
    [CrossRef] [PubMed]
  20. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
    [CrossRef] [PubMed]
  21. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
    [CrossRef] [PubMed]
  22. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28(17), 1591–1593 (2003).
    [CrossRef] [PubMed]
  23. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
    [CrossRef]
  24. A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
    [CrossRef] [PubMed]
  25. D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
    [CrossRef]
  26. J. P. Bérubé, R. Vallée, M. Bernier, O. G. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express 18(3), 1801–1819 (2010).
    [CrossRef] [PubMed]
  27. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [CrossRef] [PubMed]
  28. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
    [CrossRef]
  29. H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
    [CrossRef]
  30. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
    [CrossRef]
  31. A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity,” Opt. Commun. 55(3), 201–206 (1985).
    [CrossRef]
  32. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

2010 (1)

2009 (4)

2008 (1)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[CrossRef]

2007 (1)

2005 (2)

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

2004 (3)

2003 (3)

2002 (1)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

2001 (5)

K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[CrossRef] [PubMed]

E. Fertein, C. Przygodzki, H. Delbarre, A. Hidayat, M. Douay, and P. Niay, “Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810cm,” Appl. Opt. 40(21), 3506–3508 (2001).
[CrossRef] [PubMed]

2000 (1)

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

1999 (2)

1997 (2)

1996 (1)

1995 (1)

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

1989 (1)

1985 (1)

A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Aközbek, N.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Androz, G.

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Barton, J. S.

Becker, A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Bennion, I.

Bergé, L.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

Bernier, M.

Bérubé, J. P.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Bookey, H. T.

Bowden, C. M.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Braun, A.

Brodeur, A.

Chien, C. Y.

Chin, S. L.

J. P. Bérubé, R. Vallée, M. Bernier, O. G. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express 18(3), 1801–1819 (2010).
[CrossRef] [PubMed]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[CrossRef] [PubMed]

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28(17), 1591–1593 (2003).
[CrossRef] [PubMed]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22(5), 304–306 (1997).
[CrossRef] [PubMed]

O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22(17), 1332–1334 (1997).
[CrossRef] [PubMed]

Couairon, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

Davis, K. M.

Delbarre, H.

Desrosiers, C.

Dianov, E. M.

Ding, H.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Douay, M.

Dragomir, A.

Du, D.

Dubietis, A.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[CrossRef]

A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
[CrossRef] [PubMed]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Faucher, D.

Fertein, E.

Fibich, G.

Franco, M.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Froehly, C.

A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Glenn, W. H.

Grobnic, D.

Henderson, G.

Hidayat, A.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Hirano, M.

K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[CrossRef]

Hirao, K.

Hosono, S.

K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[CrossRef]

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Ilan, B.

Ilkov, F. A.

Itoh, K.

Jha, A.

Jiang, X.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Jukna, V.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[CrossRef]

Juodkazis, S.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Kandidov, V.

Kandidov, V. P.

Kar, A. K.

Kawamura, K. I.

K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[CrossRef]

Kazansky, P. G.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Kondo, Y.

Korn, G.

Kosareva, O. G.

Kryukov, P. G.

Li, H.

Liu, W.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28(17), 1591–1593 (2003).
[CrossRef] [PubMed]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Liu, X.

Lousteau, J.

Lu, P.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

MacPherson, W. N.

Majus, D.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Maneuf, S.

A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Matsuo, S.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Meltz, G.

Mihailov, S. J.

Misawa, H.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Mitsuyu, T.

Miura, K.

Morasse, B.

Morey, W. W.

Mourou, G.

Mysyrowicz, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Nguyen, N. T.

Niay, P.

Nikogosyan, D. N.

Nishii, J.

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[CrossRef] [PubMed]

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Nouchi, K.

Panov, N.

Petit, S.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

Przygodzki, C.

Saliminia, A.

Sarukura, N.

K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[CrossRef]

Schroeder, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Sheng, Y.

Smelser, C. W.

Squier, J.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Sugimoto, N.

Sun, H. B.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Suo, R.

Tamosauskas, G.

Theberge, F.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Toma, T.

Tzortzakis, S.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

Unruh, J.

Valiulis, G.

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[CrossRef]

Vallée, R.

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Watanabe, M.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
[CrossRef] [PubMed]

Watanabe, W.

Yamada, K.

Zagorulko, K. A.

Zhang, L.

Zhou, K.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. I. Kawamura, N. Sarukura, M. Hirano, and S. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005).
[CrossRef]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104(15), 3450–3455 (2000).
[CrossRef]

Laser Chem. (1)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[CrossRef]

Opt. Commun. (3)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

A. Barthelemy, S. Maneuf, and C. Froehly, “Soliton propagation and self-trapping of laser beams by a Kerr optical nonlinearity,” Opt. Commun. 55(3), 201–206 (1985).
[CrossRef]

Opt. Express (5)

Opt. Lett. (13)

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
[CrossRef] [PubMed]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22(5), 304–306 (1997).
[CrossRef] [PubMed]

O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett. 22(17), 1332–1334 (1997).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[CrossRef] [PubMed]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28(22), 2171–2173 (2003).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[CrossRef] [PubMed]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[CrossRef] [PubMed]

A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
[CrossRef] [PubMed]

K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26(1), 19–21 (2001).
[CrossRef] [PubMed]

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28(17), 1591–1593 (2003).
[CrossRef] [PubMed]

Phys. Rev. A (1)

D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A 79(3), 033843 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of the experimental setup used to write FBGs.

Fig. 2
Fig. 2

Far-field images of the supercontinuum (generated along the ± 1 diffracted orders) resulting from the filamentation process for input pulse energies of (a) 0.25mJ, (b) 0.5mJ, (c) 1.0mJ and (d) 1.75mJ.

Fig. 3
Fig. 3

(a) Supercontinuum emission spectra, (b) Plasma emission spectra. Both types of emissions were measured during the filamentation process for different input pulse energies. Curves are offset by + 5dB for clarity.

Fig. 4
Fig. 4

Cross section traces of dc refractive index changes inscribed in the 200 µm diameter fiber and cleaved in the middle of the FBG after 60 s exposure and for input pulse energies ranging between 0.25mJ and 2.0 mJ.

Fig. 5
Fig. 5

(a) Three dimensional view of the trace of the refractive index change at 1.0mJ for 30 s. (b) Filament transverse profile corresponding to position where the dc refractive index change is maximal (i.e. at 50 µm from the input fiber face) for a pulse energy of 1.0mJ and 30s exposure.

Fig. 6
Fig. 6

(a) Maximum dc refractive index change and, (b) filament length as a function of the input pulse energy for an exposure time of 60s. (c) Maximum dc refractive index change and, (d) filament length as a function of exposure for 1.0 mJ pulse energy.

Fig. 7
Fig. 7

Refractive index profiles of hydrogen-free SMF28 fibers exposed at pulse energies of 0.5, 1.25 and 2.0mJ for an exposure time of 20s. The laser pulse is arriving from the left.

Fig. 8
Fig. 8

Contour plot of the dc refractive index change of a hydrogen-loaded SMF28 fiber exposed at a pulse energy of 1.4 mJ for 60s.

Fig. 9
Fig. 9

Schematic of the 1D self-focusing process.

Fig. 10
Fig. 10

Interference fringe pattern resulting from the 1D self-focusing process (top). Intensity fringe pattern is of the order of 20mm long along z. Note that for pictorial reasons the number of fringes is largely underrepresented.

Fig. 11
Fig. 11

Reflectivity spectra for a saturated FBG written at an input pulse energy of 1mJ in (a) hydrogen-free SMF28 fiber for an exposure time of 140 seconds and (b) hydrogen-loaded SMF28 fiber for an exposure time of 30 seconds.

Fig. 12
Fig. 12

Variation of index modulation as a function of annealing temperature for gratings written in H2-free and H2-loaded fibers with an initial non-saturated refractive index modulation of about 5x10−4. The fibers were annealed for 30 min. at each temperature.

Fig. 13
Fig. 13

(a) Reflection and transmission spectra for an unsaturated FBG written in a hydrogen-free SMF28 fiber at 2.5mJ, a length of 25mm and an exposure time of 10 s. (b) Transmission spectrum for an FBG written in a 2000ppm Tm3+-doped ZBLAN fiber at 2.5mJ, a length of 25mm and an exposure time of 20 s.

Metrics