Abstract

This paper reports on the mechanical properties of fused silica flexures manufactured by a two-step process combining femtosecond lasers exposure below the ablation threshold and chemical etching. Flexural strengths as high as 2.7 GPa were measured, demonstrating that femtosecond lasers can be efficiently used to produce arbitrarily shaped high-strength mechanical devices, opening new opportunities for the design of monolithically integrated optomechanical devices.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Smith, Flexures (Gordon and Breach, 2000).
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  4. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 .
    [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
    [CrossRef] [PubMed]
  6. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 .
    [CrossRef] [PubMed]
  7. L. Canioni, M. Bellec, A. Royon, B. Bousquet, and T. Cardinal, “Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass,” Opt. Lett.33(4), 360–362 (2008).
    [CrossRef] [PubMed]
  8. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
    [CrossRef]
  9. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett.28(13), 1144–1146 (2003).
    [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 .
    [CrossRef] [PubMed]
  11. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium - Proceedings (2003), Vol. 782, pp. 63–68.
  12. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004).
    [CrossRef] [PubMed]
  13. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-658 .
    [CrossRef] [PubMed]
  14. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 .
    [CrossRef] [PubMed]
  15. Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: When fluidics, mechanics and optics meet in a single substrate,” ISOT 2009 International Symposium on Optomechatronic Technologies (2009), pp. 445–450.
  16. D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
    [CrossRef]
  17. F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
    [CrossRef] [PubMed]
  18. A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
    [CrossRef]
  19. R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
    [CrossRef]
  20. M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996).
    [CrossRef]
  21. Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
    [CrossRef]
  22. Y. Bellouard, Microrobotics: Methods and Applications (Taylor & Francis / CRC Press, 2009).
  23. C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).
  24. J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).
  25. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
    [CrossRef]
  26. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
    [CrossRef] [PubMed]
  27. B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
    [CrossRef]
  28. C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
    [CrossRef]
  29. C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).
  30. G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
    [CrossRef] [PubMed]
  31. L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).
  32. D. Hull, Fractography, Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, 1999), ISBN 0 521 64082 2.
  33. D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
    [CrossRef]
  34. J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
    [CrossRef]
  35. K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
    [CrossRef]
  36. O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
    [CrossRef]

2011 (3)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-658 .
[CrossRef] [PubMed]

2010 (1)

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

2009 (3)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (1)

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

2005 (3)

2004 (2)

2003 (4)

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett.28(13), 1144–1146 (2003).
[CrossRef] [PubMed]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

2002 (1)

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

1996 (2)

1995 (1)

D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
[CrossRef]

1994 (1)

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

1989 (1)

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

1973 (1)

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

1967 (1)

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

1965 (1)

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

1958 (1)

R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
[CrossRef]

1952 (1)

C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).

1949 (1)

J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
[CrossRef]

Alarcón, O. E.

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Audouard, E.

Bado, P.

Baikova, L. G.

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

Barthel, E.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Bellec, M.

Bellouard, Y.

Beresna, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Bhardwaj, V. R.

Blömer, D.

Bonamy, D.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Bouchaud, E.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Bousquet, B.

Brambilla, G.

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

Brow, R. K.

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Burghoff, J.

Canioni, L.

Cardinal, T.

Célarié, F.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Cerullo, G.

Chang, T. H.

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

Charles, R. J.

R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
[CrossRef]

Chen, C. P.

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

Cheng, G.

Cheng, Y.

Corkum, P. B.

Custers, J. F. H.

J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
[CrossRef]

Dalmas, D.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Davis, K. M.

Della Valle, G.

Dugan, M.

Ferrero, L.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Festa, A.

Franks, A.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Gecevicius, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gillis, P. P.

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Guillot, C.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Gupta, P. K.

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Hertel, I. V.

Hirao, K.

Hnatovsky, C.

Hull, D.

D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
[CrossRef]

Huot, N.

Johnson, J. W.

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

Kawachi, M.

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Kermouche, G.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Kurkjian, C. R.

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Laporta, P.

Lederer, F.

Lindsey, K.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Ling, C. B.

C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).

Marlière, C.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Masuda, M.

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Matthewson, M. J.

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

Mauclair, C.

Medrano, R. E.

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Midorikawa, K.

Miura, K.

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Nolte, S.

Osellame, R.

Paros, J. M.

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

Payne, D. N.

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

Perriot, A.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Pertsch, T.

Ponson, L.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Prades, S.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Proctor, B. A.

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

Pukh, V. P.

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

Puttick, K. E.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Quérel, G.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Ravi-Chandar, K.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Rayner, D. M.

Rohrlack, T.

Rosenfeld, A.

Rountree, C. L.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Royon, A.

Rudman, M. R.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Said, A.

Schaap, A.

Schreiber, T.

Shihoyama, K.

Shiue, Y. S.

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

Simova, E.

Smith, K. J.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Stoian, R.

Sugimoto, N.

Sugioka, K.

Szameit, A.

Taccheo, S.

Taylor, R. S.

Tomozawa, M.

M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996).
[CrossRef]

Toyoda, K.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Tünnermann, A.

Vandembroucq, D.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Weisbord, L.

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

Whitney, I.

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Biomed. Opt. Express (1)

Glass Ceram. (1)

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

Int. J Appl. Glass Sci. (1)

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Int. J. Fract. (2)

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
[CrossRef]

J. Appl. Mech. (1)

C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).

J. Appl. Phys. (1)

R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
[CrossRef]

J. Eur. Ceram. Soc. (1)

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Mach. Des. (1)

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

Mater. Chem. Phys. (1)

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

Metall. Mater. Trans. A (1)

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Nano Lett. (1)

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

Nature (1)

J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
[CrossRef]

Opt. Express (5)

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
[CrossRef] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 .
[CrossRef] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 .
[CrossRef] [PubMed]

A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 .
[CrossRef] [PubMed]

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 .
[CrossRef] [PubMed]

Opt. Lett. (5)

Philos. Mag. (1)

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Other (5)

D. Hull, Fractography, Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, 1999), ISBN 0 521 64082 2.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium - Proceedings (2003), Vol. 782, pp. 63–68.

Y. Bellouard, Microrobotics: Methods and Applications (Taylor & Francis / CRC Press, 2009).

S. T. Smith, Flexures (Gordon and Breach, 2000).

Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: When fluidics, mechanics and optics meet in a single substrate,” ISOT 2009 International Symposium on Optomechatronic Technologies (2009), pp. 445–450.

Supplementary Material (2)

» Media 1: AVI (549 KB)     
» Media 2: AVI (2448 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics