Abstract

This paper reports on the mechanical properties of fused silica flexures manufactured by a two-step process combining femtosecond lasers exposure below the ablation threshold and chemical etching. Flexural strengths as high as 2.7 GPa were measured, demonstrating that femtosecond lasers can be efficiently used to produce arbitrarily shaped high-strength mechanical devices, opening new opportunities for the design of monolithically integrated optomechanical devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Smith, Flexures (Gordon and Breach, 2000).
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  4. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 .
    [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
    [CrossRef] [PubMed]
  6. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 .
    [CrossRef] [PubMed]
  7. L. Canioni, M. Bellec, A. Royon, B. Bousquet, and T. Cardinal, “Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass,” Opt. Lett.33(4), 360–362 (2008).
    [CrossRef] [PubMed]
  8. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
    [CrossRef]
  9. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett.28(13), 1144–1146 (2003).
    [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 .
    [CrossRef] [PubMed]
  11. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium - Proceedings (2003), Vol. 782, pp. 63–68.
  12. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004).
    [CrossRef] [PubMed]
  13. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-658 .
    [CrossRef] [PubMed]
  14. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 .
    [CrossRef] [PubMed]
  15. Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: When fluidics, mechanics and optics meet in a single substrate,” ISOT 2009 International Symposium on Optomechatronic Technologies (2009), pp. 445–450.
  16. D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
    [CrossRef]
  17. F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
    [CrossRef] [PubMed]
  18. A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
    [CrossRef]
  19. R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
    [CrossRef]
  20. M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996).
    [CrossRef]
  21. Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
    [CrossRef]
  22. Y. Bellouard, Microrobotics: Methods and Applications (Taylor & Francis / CRC Press, 2009).
  23. C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).
  24. J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).
  25. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
    [CrossRef]
  26. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
    [CrossRef] [PubMed]
  27. B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
    [CrossRef]
  28. C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
    [CrossRef]
  29. C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).
  30. G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
    [CrossRef] [PubMed]
  31. L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).
  32. D. Hull, Fractography, Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, 1999), ISBN 0 521 64082 2.
  33. D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
    [CrossRef]
  34. J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
    [CrossRef]
  35. K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
    [CrossRef]
  36. O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
    [CrossRef]

2011 (3)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-658 .
[CrossRef] [PubMed]

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

2010 (1)

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

2009 (3)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (1)

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

2005 (3)

2004 (2)

2003 (4)

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett.28(13), 1144–1146 (2003).
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

2002 (1)

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

1996 (2)

1995 (1)

D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
[CrossRef]

1994 (1)

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

1989 (1)

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

1973 (1)

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

1967 (1)

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

1965 (1)

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

1958 (1)

R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
[CrossRef]

1952 (1)

C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).

1949 (1)

J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
[CrossRef]

Alarcón, O. E.

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Audouard, E.

Bado, P.

Baikova, L. G.

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

Barthel, E.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Bellec, M.

Bellouard, Y.

Beresna, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Bhardwaj, V. R.

Blömer, D.

Bonamy, D.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Bouchaud, E.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Bousquet, B.

Brambilla, G.

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

Brow, R. K.

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Burghoff, J.

Canioni, L.

Cardinal, T.

Célarié, F.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Cerullo, G.

Chang, T. H.

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

Charles, R. J.

R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
[CrossRef]

Chen, C. P.

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

Cheng, G.

Cheng, Y.

Corkum, P. B.

Custers, J. F. H.

J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
[CrossRef]

Dalmas, D.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Davis, K. M.

Della Valle, G.

Dugan, M.

Ferrero, L.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Festa, A.

Franks, A.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Gecevicius, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gillis, P. P.

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Guillot, C.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Gupta, P. K.

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Hertel, I. V.

Hirao, K.

Hnatovsky, C.

Hull, D.

D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
[CrossRef]

Huot, N.

Johnson, J. W.

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

Kawachi, M.

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Kermouche, G.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Kurkjian, C. R.

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Laporta, P.

Lederer, F.

Lindsey, K.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Ling, C. B.

C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).

Marlière, C.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Masuda, M.

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Matthewson, M. J.

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

Mauclair, C.

Medrano, R. E.

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Midorikawa, K.

Miura, K.

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Nolte, S.

Osellame, R.

Paros, J. M.

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

Payne, D. N.

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

Perriot, A.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Pertsch, T.

Ponson, L.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Prades, S.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Proctor, B. A.

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

Pukh, V. P.

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

Puttick, K. E.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Quérel, G.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Ravi-Chandar, K.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Rayner, D. M.

Rohrlack, T.

Rosenfeld, A.

Rountree, C. L.

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

Royon, A.

Rudman, M. R.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Said, A.

Schaap, A.

Schreiber, T.

Shihoyama, K.

Shiue, Y. S.

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

Simova, E.

Smith, K. J.

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Stoian, R.

Sugimoto, N.

Sugioka, K.

Szameit, A.

Taccheo, S.

Taylor, R. S.

Tomozawa, M.

M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996).
[CrossRef]

Toyoda, K.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Tünnermann, A.

Vandembroucq, D.

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Weisbord, L.

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

Whitney, I.

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Biomed. Opt. Express (1)

Glass Ceram. (1)

L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).

Int. J Appl. Glass Sci. (1)

C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010).
[CrossRef]

Int. J. Fract. (2)

D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995).
[CrossRef]

D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006).
[CrossRef]

J. Appl. Mech. (1)

C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).

J. Appl. Phys. (1)

R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958).
[CrossRef]

J. Eur. Ceram. Soc. (1)

Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002).
[CrossRef]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Mach. Des. (1)

J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).

Mater. Chem. Phys. (1)

C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).

Metall. Mater. Trans. A (1)

O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994).
[CrossRef]

Nano Lett. (1)

G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009).
[CrossRef] [PubMed]

Nature (1)

J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949).
[CrossRef]

Opt. Express (5)

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 .
[CrossRef] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 .
[CrossRef] [PubMed]

A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 .
[CrossRef] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 .
[CrossRef] [PubMed]

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 .
[CrossRef] [PubMed]

Opt. Lett. (5)

Philos. Mag. (1)

A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967).
[CrossRef]

K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989).
[CrossRef]

Other (5)

D. Hull, Fractography, Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, 1999), ISBN 0 521 64082 2.

Y. Bellouard, Microrobotics: Methods and Applications (Taylor & Francis / CRC Press, 2009).

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium - Proceedings (2003), Vol. 782, pp. 63–68.

Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: When fluidics, mechanics and optics meet in a single substrate,” ISOT 2009 International Symposium on Optomechatronic Technologies (2009), pp. 445–450.

S. T. Smith, Flexures (Gordon and Breach, 2000).

Supplementary Material (2)

» Media 1: AVI (549 KB)     
» Media 2: AVI (2448 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left: Schematic (CAD model) of the test structure used in these experiments. The part is cut out of a 1mm-thick fused silica substrate. It consists of a slender part (the hinge) in the lower right corner, a protective frame, reference surfaces and mounting hole in the upper left corner. A contact pin moving along the Y-axis is used to load the hinge in bending. Right: Picture of hinge about to be loaded. The contact pin (0.5 mm in diameter) can be seen as well as scattered light (red) from the laser-beam used for the photoelasticity measurements that will be discussed laser in this document.

Fig. 2
Fig. 2

(left) Specimen contour; the characteristic dimensions of the flexure are shown (Middle) Scanning Electron Microscope image of the flexure part (region framed with a dash line in the left figure) and (right) close view of the micromachined surface. Edge roughness resulting from the laser exposure typically varies from Rtm (Mean peak-to-valley) = 160 nm to 200 nm.

Fig. 3
Fig. 3

Illustration of beam bending experiments. The flexure shown on these images is 40-micron thick in its thinnest part and the complete beam is 9.5 mm long. The video shows the flexure being loaded and unloaded (see Media 1).

Fig. 4
Fig. 4

Stress induced interference fringes observed in a 106 micron-thick flexure (see Media 2) – The image shows the hinge just before breaking. Counting the fringes from the center gives a direct observation of the stress effectively present in the beam. The loading mode and boundary conditions are outlined.

Fig. 5
Fig. 5

Calculated breaking strength as a function of etching time and hinge thickness for five series of data with various designed thickness parameters. Note that the maximum stress does not mean it is the stress at which the glass breaks but rather the highest stress found in flexure before it broke. A maximum of 2.65 GPa was reached with one of the specimen which is to date, the highest ever reported value for a non-pristine shape. Error bars (not shown to preserve the graph readability) are +/− 60 MPa along de Y axis, +/− 0.6% for the etched volume and +/− 2 µm for the thickness measurement. Dotted lines are linear fits for each set of data. They are provided as eye-guides to illustrate a trend but should not be over-interpreted due to the limited number of data-points and the statistical nature of glass fracture.

Fig. 6
Fig. 6

Broken pattern location along the flexure profile. The origin is defined on the clamped side of the flexure. Error bars are +/− 60 MPa for the maximum stress in the hinge and +/− 20 µm for the fracture location. The data are shown for the same five sets of experiments shown in Fig. 5. The number next to the data point is the percentage of removed material through etching from the desired cut profile.

Fig. 7
Fig. 7

Scanning electron microscopy images of the fracture zone. This specimen failed for an equivalent stress of about 1.7 GPa. The locations of images #1 to #5 are shown in the central image which shows an overview of the broken flexure. #3 shows the presumed location of the flaw that initiated the catastrophic failure. #4 and #5 illustrate nano-scale coiled fibers found in the river pattern region. These coiled nanofibers are interpreted as evidence of localized glass plasticity.

Fig. 8
Fig. 8

Scanning Electron Microscope images of the fracture zones of a thick micro-hinge. The maximal stress reached in the hinge was well above 2 GPa. The first two images show an overview of the fracture front viewed from two different angles. Images #3 to #6 show salient features found in the fracture pattern. The initial crack location that is likely to have ruined the specimen is indicated in image #1. Evidence of nanoscale plastic flow is visible in #4.

Fig. 9
Fig. 9

Topography analysis for a series of four specimens made in the same substrate but etched for gradually increasing etching time. The top graph shows the hybrid parameter Δq that describe the geometric average slope for the entire matrix and for x and y directions. The bottom graph indicates the arithmetical mean deviation (Ra). The images on the right are the Atomic Force Microscope scans of each of the specimen. The scanned surface is 42 x 42 μm. The z-scale is 300 nm.

Tables (1)

Tables Icon

Table 1 Parameters for the Hinges Presented in Fig. 6 and Fig. 7

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ max =6 K T ( M z w t 2 ),
K t = ( 1+β ) 9 20 ,
K α z , M z = M z α z 2Ew t 5 2 9π r ,
σ max 4E 3π t r α z .
B=Δn= n e n 0 =C( σ y σ x ) with C= C 1 C 2 ,
I(x,y)= I 0 sin 2 [ 2β( x,y ) ] sin 2 [ ϕ( x,y ) 2 ],
ϕ=2πC( σ y σ x )[ t λ 0 ],
ϕ=m( 2π ) i.e. ( σ y σ x ) =m( λ 0 Ct ).
Δq= 1 L 0 L ( dy dx ) 2 dx ,

Metrics