Abstract

Here we discuss the influence of a substrate on transmission through subwavelength holes in metallic films. In particular, we show that in the case of transmission maxima associated with localized resonances of the apertures, that the wavelength at which this maximum occurs are strongly influenced by the presence of a substrate and the aspect ratio of the structure. Furthermore, we show that removing a shallow region of the substrate immediately below the apertures leads to blue-shifting of the resonance and increased transmission compared to that in the presence of a homogeneous substrate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef] [PubMed]
  3. D. Van Labeke, D. Gérard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express 14(25), 11945–11951 (2006).
    [CrossRef] [PubMed]
  4. X. M. Goh, L. Lin, and A. Roberts, “Plasmonic lenses for wavefront control applications using two-dimensional nanometric cross-shaped aperture arrays,” J. Opt. Soc. Am. B 28(3), 547–553 (2011).
    [CrossRef]
  5. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [CrossRef] [PubMed]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [CrossRef] [PubMed]
  7. J. H. Kang, J.-H. Choe, D. S. Kim, and Q.-H. Park, “Substrate effect on aperture resonances in a thin metal film,” Opt. Express 17(18), 15652–15658 (2009).
    [CrossRef] [PubMed]
  8. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [CrossRef]
  9. Y. Pang, C. Genet, and T. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
    [CrossRef]
  10. K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
    [CrossRef]
  11. K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
    [CrossRef] [PubMed]
  12. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [CrossRef] [PubMed]
  13. F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
    [CrossRef]
  14. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
    [CrossRef]
  15. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
    [CrossRef]
  16. M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett. 88(19), 193104 (2006).
    [CrossRef]
  17. M. I. Haftel, C. Schlockermann, and G. Blumberg, “Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,” Phys. Rev. B 74(23), 235405 (2006).
    [CrossRef]
  18. S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33(8), 821–823 (2008).
    [CrossRef] [PubMed]
  19. S. M. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
    [CrossRef] [PubMed]
  20. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95(20), 201116 (2009).
    [CrossRef]
  21. A. Roberts, “Beam transmission through hole arrays,” Opt. Express 18(3), 2528–2533 (2010).
    [CrossRef] [PubMed]
  22. D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
    [CrossRef]
  23. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [CrossRef]
  24. F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
    [CrossRef]
  25. K. D. Möller, J. B. Warren, J. B. Heaney, and C. Kotecki, “Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions,” Appl. Opt. 35(31), 6210–6215 (1996).
    [CrossRef] [PubMed]
  26. R. C. Compton, L. B. Whitbourn, and R. C. McPhedran, “Strip gratings at a dielectric interface and applicaton of Babinet’s principle,” Appl. Opt. 23(18), 3236–3242 (1984).
    [CrossRef] [PubMed]
  27. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt. 24(2), 217–220 (1985).
    [CrossRef] [PubMed]
  28. S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
    [CrossRef]
  29. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  31. A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
    [CrossRef]
  32. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
    [CrossRef]
  33. J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
    [CrossRef] [PubMed]

2011

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

X. M. Goh, L. Lin, and A. Roberts, “Plasmonic lenses for wavefront control applications using two-dimensional nanometric cross-shaped aperture arrays,” J. Opt. Soc. Am. B 28(3), 547–553 (2011).
[CrossRef]

2010

A. Roberts, “Beam transmission through hole arrays,” Opt. Express 18(3), 2528–2533 (2010).
[CrossRef] [PubMed]

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[CrossRef]

S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[CrossRef]

2009

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95(20), 201116 (2009).
[CrossRef]

J. H. Kang, J.-H. Choe, D. S. Kim, and Q.-H. Park, “Substrate effect on aperture resonances in a thin metal film,” Opt. Express 17(18), 15652–15658 (2009).
[CrossRef] [PubMed]

2008

2007

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[CrossRef] [PubMed]

Y. Pang, C. Genet, and T. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
[CrossRef]

2006

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett. 88(19), 193104 (2006).
[CrossRef]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,” Phys. Rev. B 74(23), 235405 (2006).
[CrossRef]

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

D. Van Labeke, D. Gérard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express 14(25), 11945–11951 (2006).
[CrossRef] [PubMed]

S. M. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
[CrossRef] [PubMed]

2005

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
[CrossRef]

2004

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

2002

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

2001

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1996

1988

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
[CrossRef]

1985

1984

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1967

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[CrossRef]

Baida, F. I.

F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
[CrossRef]

D. Van Labeke, D. Gérard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express 14(25), 11945–11951 (2006).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Belkhir, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Bettiol, A. A.

S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[CrossRef]

Blumberg, G.

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,” Phys. Rev. B 74(23), 235405 (2006).
[CrossRef]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett. 88(19), 193104 (2006).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[CrossRef] [PubMed]

Brener, I.

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Chiam, S. Y.

S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[CrossRef]

Choe, J.-H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Compton, R. C.

Davis, T. J.

Ebbesen, T.

Y. Pang, C. Genet, and T. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[CrossRef] [PubMed]

Freeman, D.

Funston, A. M.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

García-Vidal, F. J.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

Genet, C.

Y. Pang, C. Genet, and T. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Gérard, D.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Goh, X. M.

X. M. Goh, L. Lin, and A. Roberts, “Plasmonic lenses for wavefront control applications using two-dimensional nanometric cross-shaped aperture arrays,” J. Opt. Soc. Am. B 28(3), 547–553 (2011).
[CrossRef]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Gómez, D. E.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Gordon, R.

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[CrossRef]

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Granet, G.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Gray, S. K.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Guizal, B.

Haftel, M. I.

S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33(8), 821–823 (2008).
[CrossRef] [PubMed]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,” Phys. Rev. B 74(23), 235405 (2006).
[CrossRef]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett. 88(19), 193104 (2006).
[CrossRef]

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Han, J.

Hande, L. B.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95(20), 201116 (2009).
[CrossRef]

Heaney, J. B.

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
[CrossRef]

Jamieson, D. N.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kang, J. H.

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Kim, D. S.

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Kotecki, C.

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Kumar, L. K. S.

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
[CrossRef]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, D.

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[CrossRef]

Li, L.

Lin, L.

X. M. Goh, L. Lin, and A. Roberts, “Plasmonic lenses for wavefront control applications using two-dimensional nanometric cross-shaped aperture arrays,” J. Opt. Soc. Am. B 28(3), 547–553 (2011).
[CrossRef]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95(20), 201116 (2009).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
[CrossRef]

Luther-Davies, B.

Martin-Moreno, L.

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Martín-Moreno, L.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[CrossRef] [PubMed]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

McPhedran, R. C.

Milicevic, M.

Möller, K. D.

Moreau, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Moreno, E.

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

Mulvaney, P.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Nordlander, P.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Novo, C.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

O’Hara, J. F.

Orbons, S. M.

Pang, Y.

Y. Pang, C. Genet, and T. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Park, Q.-H.

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Ratner, M. A.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Roberts, A.

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
[CrossRef]

Schatz, G. C.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Schlockermann, C.

S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33(8), 821–823 (2008).
[CrossRef] [PubMed]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,” Phys. Rev. B 74(23), 235405 (2006).
[CrossRef]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett. 88(19), 193104 (2006).
[CrossRef]

Shuford, K. L.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

Singh, R.

S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Smirnova, E.

Taylor, A. J.

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[CrossRef]

Van Labeke, D.

D. Van Labeke, D. Gérard, B. Guizal, F. I. Baida, and L. Li, “An angle-independent Frequency Selective Surface in the optical range,” Opt. Express 14(25), 11945–11951 (2006).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

Vernon, K. C.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Warren, J. B.

Whitbourn, L. B.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Zhang, W.

S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

F. I. Baida, “Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode,” Appl. Phys. B 89(2-3), 145–149 (2007).
[CrossRef]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004).
[CrossRef]

Appl. Phys. Lett.

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Appl. Phys. Lett. 88(19), 193104 (2006).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95(20), 201116 (2009).
[CrossRef]

S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[CrossRef]

Chem. Phys. Lett.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007).
[CrossRef]

IEEE Trans. Antenn. Propag.

A. Roberts and R. C. McPhedran, “Bandpass grids with annular apertures,” IEEE Trans. Antenn. Propag. 36(5), 607–611 (1988).
[CrossRef]

Infrared Phys.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,” J. Opt. A, Pure Appl. Opt. 7(2), S152–S158 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Langmuir

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Nano Lett.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef] [PubMed]

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Y. Pang, C. Genet, and T. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[CrossRef]

Phys. Rev. B

F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

M. I. Haftel, C. Schlockermann, and G. Blumberg, “Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,” Phys. Rev. B 74(23), 235405 (2006).
[CrossRef]

Phys. Rev. Lett.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic showing metal films periodically perforated with coaxial apertures: (a) Schematic showing the geometry of an aperture of outer radius a and inner radius b (b) Schematic showing a metallic film of thickness h perforated with a square array of apertures with periodicity d sitting on a dielectric substrate, and (c) a structure similar to that shown in (b) where the apertures extend into the substrate a distance t.

Fig. 2
Fig. 2

Transmission through a square periodic array of annular apertures with outer radius a = 0.45d and b = 0.40d in a PEC film with grating constant d and apertures. (a) and (b) show the normalized transmission as a function of the refractive index of the substrate in the case where the structure has a thickness of (a) h = 0.1d and (b) h = 0.40d. (c) and (d) show the transmission as a function of structure thickness for films supported by substrates of refractive index (c) n = 1 and (d) n = 1.52.

Fig. 3
Fig. 3

The location of the maximum in transmission associated with the longest wavelength localized aperture resonance (a) as a function of substrate refractive index for two structures with films of thickness h = 0.10d and h = 0.40d and (b) as a function of film thickness for structures on substrates of refractive index n = 1 and n = 1.52. The periodicity of the array is d, the outer radius of the rings, a = 1.45d and the inner radius, b = 0.40d.The dashed line in (b) shows the cutoff wavelength for the TE11 coaxial waveguide mode.

Fig. 4
Fig. 4

Transmission through arrays of coaxial apertures in silver films for different film thicknesses as a function of wavelength. The outer and inner radii of the apertures are 125 nm and 75 nm respectively. In (a) the films are free-standing and (b) the films sit on a semi-infinite substrate with refractive index 1.52.

Fig. 5
Fig. 5

Location of transmission maxima in the spectra shown in Fig. 4. Dotted lines are exponential fits drawn to guide the eye.

Fig. 6
Fig. 6

Transmission through arrays of coaxial apertures in silver films of thickness 150 nm. The outer and inner radii of the apertures are 125 nm and 75 nm respectively. The films are supported by a substrate with refractive index of 1.52 where the substrate has been milled to different depths. Figure (a) shows the transmission spectra, while (b) shows the location of the transmission maximum for different milling depths, t. The horizontal black dashed line in (b) shows the value of the resonant wavelength of the corresponding free-standing film, while the blue dashed curve is an exponential fit to the data drawn to guide the eye.

Fig. 7
Fig. 7

The magnitude of the electric field at resonance around the metal film. The magnitude of the electric field, | E |, near a free-standing perforated Ag film at λ = 818 nm with parameters given in Fig. 5: (a) a transverse slice z = 0 through the centre of the Ag, (b) a meridional slice at y = 0, (c) | E | through the structure milled to a depth of 20 nm at λ = 841 nm and (d) shows | E | along the dotted line shown in (b) at a radius of (a + b)/2 as a function of distance below the lower surface of the Ag film in the absence (at 818 nm) and presence (at 879 nm) of a substrate and at 841 nm when the substrate has been milled to a depth of 20 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C s u b = C 0 ( 1 + n 2 2 ) ,
λ r e s = λ 0 1 + n 2 2 ,

Metrics