Abstract

Hafnium dioxide films have been produced by plasma ion assisted electron beam evaporation, utilizing argon or xenon as working gases. The optical constants of the layers have been investigated by spectrophotometry, while X-ray reflection measurements (XRR), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) have been performed with selected samples. The correlation between structural and optical properties is discussed. With respect to optical quality, the application of xenon as working gas results in coatings with higher refractive index and smaller surface roughness than the application of argon. This effect is attributed to a more efficient momentum transfer from high energetic working gas ions or atoms to hafnium atoms during deposition.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
    [CrossRef]
  2. J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008).
    [CrossRef]
  3. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
    [CrossRef]
  4. J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surf. Coat. Tech. 201(6), 3530–3535 (2006).
    [CrossRef]
  5. T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
    [CrossRef]
  6. N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
    [CrossRef]
  7. J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
    [CrossRef] [PubMed]
  8. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
    [CrossRef]
  9. O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011).
    [CrossRef] [PubMed]
  10. B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000).
    [CrossRef]
  11. D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
    [CrossRef]
  12. M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Appl. Opt. 44(15), 3006–3012 (2005).
    [CrossRef] [PubMed]
  13. A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
    [CrossRef]
  14. E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007).
    [CrossRef]
  15. J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
    [CrossRef]
  16. M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
    [CrossRef]
  17. A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002).
    [CrossRef] [PubMed]
  18. J. Bellum, D. Kletecka, P. Rambo, I. Smith, J. Schwarz, and B. Atherton, “Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings,” Appl. Opt. 50(9), C340–C348 (2011).
    [CrossRef] [PubMed]
  19. X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, “Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors,” Appl. Opt. 50(9), C357–C363 (2011).
    [CrossRef] [PubMed]
  20. Z. Jinlong, C. Xinbin, W. Zhanshan, J. Hongfei, and D. Tao, “HfO2/SiO2 chirped mirrors manufactured by electron beam evaporation,” Appl. Opt. 50(9), C388–C391 (2011).
    [CrossRef] [PubMed]
  21. S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
    [CrossRef]
  22. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
    [CrossRef] [PubMed]
  23. G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).
  24. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41(16), 3256–3261 (2002).
    [CrossRef] [PubMed]
  25. M. Gilo and N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350(1-2), 203–208 (1999).
    [CrossRef]
  26. J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27(18), 3779–3781 (1988).
    [CrossRef] [PubMed]
  27. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
    [CrossRef]
  28. M. Born and E. Wolf, Principle of Optics (Pergamon Press, 1968)
  29. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  30. E. C. Freeman and W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20(2), 716–728 (1979).
    [CrossRef]
  31. H. Finkenrath, “The Moss rule and the influence of doping on the optical dielectric constant of semiconductors—I,” Infrared Phys. 28(5), 327–332 (1988).
    [CrossRef]
  32. O. Stenzel, “A model for calculating the effect of nanosized pores on refractive index, thermal shift and mechanical stress in optical coatings,” J. Phys. D 42(5), 055312 (2009).
    [CrossRef]

2011 (5)

2010 (2)

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
[CrossRef]

2009 (3)

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
[CrossRef]

O. Stenzel, “A model for calculating the effect of nanosized pores on refractive index, thermal shift and mechanical stress in optical coatings,” J. Phys. D 42(5), 055312 (2009).
[CrossRef]

2008 (3)

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008).
[CrossRef]

2007 (2)

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007).
[CrossRef]

2006 (2)

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surf. Coat. Tech. 201(6), 3530–3535 (2006).
[CrossRef]

A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
[CrossRef]

2005 (2)

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Appl. Opt. 44(15), 3006–3012 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
[CrossRef]

2002 (3)

2001 (1)

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

2000 (3)

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
[CrossRef]

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000).
[CrossRef]

1999 (1)

M. Gilo and N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350(1-2), 203–208 (1999).
[CrossRef]

1988 (2)

J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27(18), 3779–3781 (1988).
[CrossRef] [PubMed]

H. Finkenrath, “The Moss rule and the influence of doping on the optical dielectric constant of semiconductors—I,” Infrared Phys. 28(5), 327–332 (1988).
[CrossRef]

1979 (1)

E. C. Freeman and W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20(2), 716–728 (1979).
[CrossRef]

Aarik, J.

J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
[CrossRef]

Abromavicius, G.

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

Aita, C. R.

E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007).
[CrossRef]

Albrand, G.

Alvisi, M.

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41(16), 3256–3261 (2002).
[CrossRef] [PubMed]

A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002).
[CrossRef] [PubMed]

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

Amotchkina, T. V.

Amra, C.

Andre, B.

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000).
[CrossRef]

Arntzen, M.

Atherton, B.

Barshilia, H. C.

N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
[CrossRef]

Baumgarten, B.

Bellum, J.

Bischoff, M.

Biswas, A.

N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
[CrossRef]

Bitzer, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Bruns, S.

Burdack, P.

Buzelis, R.

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

Capoulade, J.

Cheng, X.

Chuvilin, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Commandré, M.

Couprie, M. E.

Croitoru, N.

M. Gilo and N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350(1-2), 203–208 (1999).
[CrossRef]

De Tomasi, F.

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

DeBell, G.

Ding, T.

Drazdys, R.

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

Ebert, J.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Ehlers, H.

Eisenkrämer, F.

Fan, R.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Fan, S.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Fan, Z.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Finkenrath, H.

H. Finkenrath, “The Moss rule and the influence of doping on the optical dielectric constant of semiconductors—I,” Infrared Phys. 28(5), 327–332 (1988).
[CrossRef]

Freeman, E. C.

E. C. Freeman and W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20(2), 716–728 (1979).
[CrossRef]

Friedrich, K.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
[CrossRef]

Gallais, L.

Gao, W.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Garzella, D.

Gatto, A.

Gilo, M.

M. Gilo and N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350(1-2), 203–208 (1999).
[CrossRef]

Grilli, M. L.

Grössl, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Günster, S.

Hallbauer, A.

A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
[CrossRef]

Heber, J.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[CrossRef]

A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002).
[CrossRef] [PubMed]

Held, M.

Honda, S.

T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
[CrossRef]

Hongfei, J.

Hoppe, E. E.

E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007).
[CrossRef]

Hu, Z. G.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Huber, D.

A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
[CrossRef]

Ide, M.

T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
[CrossRef]

Jakobs, S.

O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Jerman, M.

Jiao, H.

Jinlong, Z.

Kaiser, N.

O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002).
[CrossRef] [PubMed]

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41(16), 3256–3261 (2002).
[CrossRef] [PubMed]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[CrossRef]

Kaiser, U.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Kaless, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Khan, A.

J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008).
[CrossRef]

Khoshman, J. M.

J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008).
[CrossRef]

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surf. Coat. Tech. 201(6), 3530–3535 (2006).
[CrossRef]

Kirm, M.

J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
[CrossRef]

Kletecka, D.

Koch, S.

Koch, T.

Kohlhaas, J.

Kolitsch, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Kordesch, M. E.

J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008).
[CrossRef]

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surf. Coat. Tech. 201(6), 3530–3535 (2006).
[CrossRef]

Kunz, A.

A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
[CrossRef]

Lappschies, M.

Li, W. W.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Lu, J.

Ma, B.

Macleod, H. A.

Mändar, H.

J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
[CrossRef]

Mark, G.

Marsi, M.

Matsuura, M.

T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
[CrossRef]

Mende, M.

Mergel, D.

Mewes, S.

Munnik, F.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Natoli, J.-Y.

Niederwald, H.

Nishide, T.

T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
[CrossRef]

Paul, W.

E. C. Freeman and W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20(2), 716–728 (1979).
[CrossRef]

Perednis, D.

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

Perrone, M. R.

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

Pervak, V.

Poupinet, L.

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000).
[CrossRef]

Protopapa, M. L.

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

Pulker, H. K.

A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
[CrossRef]

Pung, L.

J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
[CrossRef]

Qiao, Z.

Rajam, K. S.

N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
[CrossRef]

Rambo, P.

Ravel, G.

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000).
[CrossRef]

Riggers, W.

Ristau, D.

Rizzo, A.

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

Sarto, F.

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

Scaglione, S.

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

Schäfer, R.

Schürmann, M.

Schwarz, J.

Selvakumar, N.

N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
[CrossRef]

Shao, J.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Shen, Z.

Skrebutenas, A.

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

Smith, I.

Sorbello, R. S.

E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007).
[CrossRef]

Stenzel, O.

O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
[CrossRef]

O. Stenzel, “A model for calculating the effect of nanosized pores on refractive index, thermal shift and mechanical stress in optical coatings,” J. Phys. D 42(5), 055312 (2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Stolze, M.

Sun, J.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Sytchkova, A. K.

Tang, W. T.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Tao, D.

Targove, J. D.

Thielsch, R.

A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002).
[CrossRef] [PubMed]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[CrossRef]

Tikhonravov, A. V.

Torchio, P.

Treichel, O.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Trovò, M.

Trubetskov, M. K.

Tünnermann, A.

Vergöhl, M.

Vinnichenko, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Walker, R.

Wang, X.

Wang, Y.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Wang, Z.

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Wu, J. D.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Wunderlich, B.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Wüthrich, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

Xinbin, C.

Xu, N.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Ying, Z. F.

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

Zhang, D.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Zhang, J.

Zhanshan, W.

Zhao, Y.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Appl. Opt. (10)

A. Gatto, R. Thielsch, J. Heber, N. Kaiser, D. Ristau, S. Günster, J. Kohlhaas, M. Marsi, M. Trovò, R. Walker, D. Garzella, M. E. Couprie, P. Torchio, M. Alvisi, and C. Amra, “High-performance deep-ultraviolet optics for free-electron lasers,” Appl. Opt. 41(16), 3236–3241 (2002).
[CrossRef] [PubMed]

P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41(16), 3256–3261 (2002).
[CrossRef] [PubMed]

M. Jerman, Z. Qiao, and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Appl. Opt. 44(15), 3006–3012 (2005).
[CrossRef] [PubMed]

J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27(18), 3779–3781 (1988).
[CrossRef] [PubMed]

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50(9), C69–C74 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[CrossRef] [PubMed]

J. Bellum, D. Kletecka, P. Rambo, I. Smith, J. Schwarz, and B. Atherton, “Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings,” Appl. Opt. 50(9), C340–C348 (2011).
[CrossRef] [PubMed]

X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, “Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors,” Appl. Opt. 50(9), C357–C363 (2011).
[CrossRef] [PubMed]

Z. Jinlong, C. Xinbin, W. Zhanshan, J. Hongfei, and D. Tao, “HfO2/SiO2 chirped mirrors manufactured by electron beam evaporation,” Appl. Opt. 50(9), C388–C391 (2011).
[CrossRef] [PubMed]

Appl. Surf. Sci. (1)

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243(1-4), 232–237 (2005).
[CrossRef]

Infrared Phys. (1)

H. Finkenrath, “The Moss rule and the influence of doping on the optical dielectric constant of semiconductors—I,” Infrared Phys. 28(5), 327–332 (1988).
[CrossRef]

J. Appl. Phys. (1)

E. E. Hoppe, R. S. Sorbello, and C. R. Aita, “Near-edge optical absorption behavior of sputter deposited hafnium dioxide,” J. Appl. Phys. 101(12), 123534 (2007).
[CrossRef]

J. Phys. D (1)

O. Stenzel, “A model for calculating the effect of nanosized pores on refractive index, thermal shift and mechanical stress in optical coatings,” J. Phys. D 42(5), 055312 (2009).
[CrossRef]

J. Vac. Sci. Technol. (1)

B. Andre, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications,” J. Vac. Sci. Technol. 18(5), 2372–2377 (2000).
[CrossRef]

Phys. Rev. B (1)

E. C. Freeman and W. Paul, “Optical constants of rf sputtered hydrogenated amorphous Si,” Phys. Rev. B 20(2), 716–728 (1979).
[CrossRef]

Proc. SPIE (3)

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

S. Scaglione, F. Sarto, M. Alvisi, A. Rizzo, M. R. Perrone, and M. L. Protopapa, “Correlation between the structural and optical properties of ion-assisted hafnia thin films,” Proc. SPIE 3902, 194–203 (2000).
[CrossRef]

G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, and A. Skrebutenas, “Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction,” Proc. SPIE 6596, 65961N (2007).

Sol. Energy Mater. Sol. Cells (1)

N. Selvakumar, H. C. Barshilia, K. S. Rajam, and A. Biswas, “Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers,” Sol. Energy Mater. Sol. Cells 94(8), 1412–1420 (2010).
[CrossRef]

Surf. Coat. Tech. (2)

J. M. Khoshman, A. Khan, and M. E. Kordesch, “Amorphous hafnium oxide thin films for antireflection optical coatings,” Surf. Coat. Tech. 202(11), 2500–2502 (2008).
[CrossRef]

J. M. Khoshman and M. E. Kordesch, “Optical properties of a-HfO2 thin films,” Surf. Coat. Tech. 201(6), 3530–3535 (2006).
[CrossRef]

Thin Solid Films (7)

T. Nishide, S. Honda, M. Matsuura, and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 films,” Thin Solid Films 371(1-2), 61–65 (2000).
[CrossRef]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[CrossRef]

W. T. Tang, Z. F. Ying, Z. G. Hu, W. W. Li, J. Sun, N. Xu, and J. D. Wu, “Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature,” Thin Solid Films 518(19), 5442–5446 (2010).
[CrossRef]

J. Aarik, H. Mändar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466(1-2), 41–47 (2004).
[CrossRef]

M. Alvisi, F. De Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto, and S. Scaglione, “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films,” Thin Solid Films 396(1-2), 44–52 (2001).
[CrossRef]

M. Gilo and N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350(1-2), 203–208 (1999).
[CrossRef]

Vak. Forsch. Praxis (2)

A. Kunz, A. Hallbauer, D. Huber, and H. K. Pulker, “Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten,” Vak. Forsch. Praxis 18(5), 12–16 (2006).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Praxis 21(5), 15–23 (2009).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principle of Optics (Pergamon Press, 1968)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

TEM image of a 215 nm thick PIAD HfO2-layer (120 V BIAS, rate 0.4 nm/s, deposition temperature 250°C, oxygen flow 15 sccm).

Fig. 2
Fig. 2

Refractive index of hafnia coatings (literature data). References are indicated directly in the graph.

Fig. 3
Fig. 3

On left: transmission spectra of sample 17 (deposited with argon, in dash) and sample 20 (deposited with xenon, solid line). A reference without assistance is shown as the dashed line.On right: corresponding refractive indices.

Fig. 4
Fig. 4

Bright- (left) and dark- (right) TEM images of selected samples. On the right hand side the dark-field images of the corresponding bright-fields on the left hand side are shown. The bright spots in dark-field image indicate the size of crystalline grains. Note the decrease in crystallite size from top to bottom.

Fig. 5
Fig. 5

Noble gas content in selected hafnia layers (Tables 1 and 2) versus BIAS voltage applied during deposition. Full triangles: argon assistance; Open triangles: xenon assistance. The straight connecting lines only serve as eye-guidelines.

Fig. 6
Fig. 6

Optical bandgap E04 vs. refractive index. Full triangles: argon assistance; Open triangles: xenon assistance; Open circles: no assistance.

Fig. 7
Fig. 7

Bandgap E04 vs. mass density. Full triangles: argon assistance; Open triangles: xenon assistance. The dashed straight lines indicate the result of a linear regression of the data.

Fig. 8
Fig. 8

Refractive index vs. mass density. Full triangles: argon assistance; Open triangles: xenon assistance. The dashed straight lines indicate the result of a linear regression of the data.

Fig. 9
Fig. 9

Shift vs. mass density. Full triangles: argon assistance; Open triangles: xenon assistance.

Fig. 10
Fig. 10

Shift vs. mechanical stress. Full triangles: argon assistance; Open triangles: xenon assistance. Open circles: samples without assistance. The arrows only serve as eye-guidelines.

Fig. 11
Fig. 11

rms-roughness vs. refractive index. Samples 15 and 18 originate from the present study. The other data are taken from [7]. DIBS denotes Dual Ion Beam Sputtering.

Fig. 12
Fig. 12

refractive index of hafnia coatings: literature data from Fig. 2 and highest indices obtained in the present study (black bars).

Tables (3)

Tables Icon

Table 1 Main Deposition Parameters and Characterization Methods Used

Tables Icon

Table 2 Survey of Characterization Results a

Tables Icon

Table 3 XRR Data Extracted for Samples 15 and 18 Deposited on Different Substrates

Metrics