Abstract

Plasma-etched nanostructures are useful to provide antireflective properties to glass and plastic substrates. Organic compounds were deposited on glass substrates by thermal evaporation and etched by plasma emitted from an ion plasma source. A self-organized formation of surface structures takes place during etching of a layer of 1,3,5-Triazine-2,4,6-triamine (melamine). On the other hand, the surface of N,N´-di(1-naphthyl)-N,N´-diphenyl benzidine (NPB) remained smooth after etching. In this case, the structure formation was initiated by depositing a thin oxide layer on to the organic layer prior to the etching step. For both materials the etching process can be tailored to achieve antireflective properties over a desired wavelength range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).
  2. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [CrossRef] [PubMed]
  3. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  4. M. Chen, H. C. Chang, A. S. P. Chang, S.-Y. Lin, J.-Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
    [CrossRef] [PubMed]
  5. M. Minot, “The angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am. 67(8), 1046–1050 (1977).
    [CrossRef]
  6. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
    [CrossRef]
  7. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
    [CrossRef] [PubMed]
  8. G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
    [CrossRef]
  9. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 20, 58–61 (2004).
  10. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15(20), 13108–13113 (2007).
    [CrossRef] [PubMed]
  11. M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
    [CrossRef]
  12. S. Jahromi and U. Moosheimer, “Oxygen barrier coatings based on supramolecular assembly of melamine,” Macromolecules 33(20), 7582–7587 (2000).
    [CrossRef]
  13. S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
    [CrossRef]
  14. S. Pongratz and A. Zöller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
    [CrossRef]
  15. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
    [CrossRef] [PubMed]
  16. OptiChar software, http://www.optilayer.com
  17. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt. 50(9), C31–C35 (2011).
    [CrossRef]

2011 (1)

2009 (1)

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

2008 (1)

2007 (2)

2004 (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 20, 58–61 (2004).

2002 (1)

2000 (2)

S. Jahromi and U. Moosheimer, “Oxygen barrier coatings based on supramolecular assembly of melamine,” Macromolecules 33(20), 7582–7587 (2000).
[CrossRef]

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

1999 (2)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

1996 (1)

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

1992 (1)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[CrossRef]

1977 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Acree, M.

Bauer, S.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Bläsi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Bodea, M.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Chang, A. S. P.

Chang, H. C.

Chen, C. H.

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

Chen, M.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Denga, Z.

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Dobrowolski, J. A.

Döll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Fanb, B.

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Gödeker, C.

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Hernandez-Sosa, G.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Irimia-Vladu, M.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Jahromi, S.

S. Jahromi and U. Moosheimer, “Oxygen barrier coatings based on supramolecular assembly of melamine,” Macromolecules 33(20), 7582–7587 (2000).
[CrossRef]

Kaiser, N.

Kaless, A.

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 20, 58–61 (2004).

Leitel, R.

Lin, S.-Y.

Ma, P.

Marjanovic, N.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Minot, M.

Mlynek, J.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Moosheimer, U.

S. Jahromi and U. Moosheimer, “Oxygen barrier coatings based on supramolecular assembly of melamine,” Macromolecules 33(20), 7582–7587 (2000).
[CrossRef]

Munzert, P.

U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15(20), 13108–13113 (2007).
[CrossRef] [PubMed]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 20, 58–61 (2004).

Nüesch, F.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Poitras, D.

Pongratz, S.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[CrossRef]

Präfke, C.

Ramil, A. M.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Sariciftci, N. S.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Schäffer, E.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Schubert, E. F.

Schulz, U.

Schwödiauer, R.

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Steiner, U.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Stenzel, O.

Tang, C. W.

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

Tünnermann, A.

Vakil, H.

Van Slyke, S. A.

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

Walheim, S.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Wendling, I.

Wilbrandt, S.

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Wu, G.

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Xi, J.-Q.

Zhang, F.

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Zhoub, D.

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Zöller, A.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electrolumi- nescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10(4), 1897–1904 (1992).
[CrossRef]

Macromolecules (1)

S. Jahromi and U. Moosheimer, “Oxygen barrier coatings based on supramolecular assembly of melamine,” Macromolecules 33(20), 7582–7587 (2000).
[CrossRef]

Mater. Sci. Eng. B (1)

G. Wu, Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78(2-3), 135–139 (2000).
[CrossRef]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (1)

Org. Electron. (1)

M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci, and F. Nüesch, “Small-molecule vacuum processed melamine-C60, organic field-effect transistors,” Org. Electron. 10(3), 408–415 (2009).
[CrossRef]

Science (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings, ” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Surf. Coat. Tech. (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 20, 58–61 (2004).

Thin Solid Films (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Other (2)

A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).

OptiChar software, http://www.optilayer.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Chemical structure and melting temperature of N,N´-di(1-naphthyl)-N,N´-diphenyl benzidine (NPB) and 2,4,6-triamino-1,3,5-triazine (melamine).

Fig. 2
Fig. 2

SEM images of 200 nm melamine thin film on glass (a) prior to etching and after etching for (b) 60 s, (c) 160 s and (d) 200 s.

Fig. 3
Fig. 3

Left: detail of FTIR absorbance spectra of melamine measured before and after etching and, right: absorbance values at 3130 cm-1 (band of interacting NH groups [13]) as a function of etch time and the evaluation of the etch rate.

Fig. 4
Fig. 4

Transmission T and total losses (100- R + T) of a 300 nm melamine thin film before etching and after 100s etching (dashed lines) and after 200 s etching (dotted lines). The transmission of the uncoated B270 glass is shown for comparison.

Fig. 5
Fig. 5

Reflectance of etched melamine layers on glass including 30 nm silica top layer (without back side reflectance).The reflectance of the uncoated B270 glass is shown for comparison.

Fig. 6
Fig. 6

SEM images of a 270 nm NPB thin film on glass after coating with 4 nm TiO2 and etching for (a) 60 s, (b) 180 s, (c) 240 s, and (d) 430 s.

Fig. 7
Fig. 7

Reflectance of etched NPB layers on glass without and with 36 nm silica top layer (without back side reflectance).The reflectance of the uncoated B270 glass is shown for comparison.

Fig. 8
Fig. 8

SEM images of structured melamine (a) and NPB (b) on silicon, viewing angle 45°.

Metrics