Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

3D high resolution generative deep-learning network for fluorescence microscopy imaging

Not Accessible

Your library or personal account may give you access

Abstract

Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imaging, volume imaging has to balance imaging resolution and speed. Here, we develop a new, to the best of our knowledge, 3D deep learning network based on a dual generative adversarial network (dual-GAN) framework for recovering high-resolution (HR) volume images from high speed acquired low-resolution (LR) volume images. The proposed method does not require a precise image registration process and meanwhile guarantees the predicted HR volume image faithful to its corresponding LR volume image. The results demonstrated that our method can recover ${20} {\times} /1.0\text-{\rm NA}$ volume images from coarsely registered ${5} {\times} /0.16\text-{\rm NA}$ volume images collected by light-sheet microscopy. This method would provide great potential in applications which require high resolution volume imaging.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Registration-free 3D super-resolution generative deep-learning network for fluorescence microscopy imaging

Hang Zhou, Yuxin Li, Bolun Chen, Hao Yang, Maoyang Zou, Wu Wen, Yayu Ma, and Min Chen
Opt. Lett. 48(23) 6300-6303 (2023)

High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network

Hao Zhang, Chunyu Fang, Xinlin Xie, Yicong Yang, Wei Mei, Di Jin, and Peng Fei
Biomed. Opt. Express 10(3) 1044-1063 (2019)

Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows

Chuyu Wei, Kevin K. Schwarm, Daniel I. Pineda, and R. Mitchell Spearrin
Opt. Lett. 45(8) 2447-2450 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.