Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-extinction electro-optic modulation on lithium niobate thin film

Abstract

Integrated nanophotonics using lithium-niobate-on-insulator promises much-awaited solutions for scalable photonics techniques. One of its core functions is electro-optic modulation, which currently suffers limited extinction (<30dB) due to inevitable fabrication errors. We exploit a cascaded Mach–Zehnder interferometry design to offset those errors, demonstrating up to 53 dB modulation extinction for a wide range of wavelengths between 1500 nm and 1600 nm. Together, its favorable features of chip integration, high extinction, good stability, and being broadband may prove valuable in a plethora of flourishing photonics applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Efficient electro-optical modulation on thin-film lithium niobate

Mingwei Jin, Jiayang Chen, Yongmeng Sua, Prajnesh Kumar, and Yuping Huang
Opt. Lett. 46(8) 1884-1887 (2021)

Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform

Abu Naim R. Ahmed, Sean Nelan, Shouyuan Shi, Peng Yao, Andrew Mercante, and Dennis W. Prather
Opt. Lett. 45(5) 1112-1115 (2020)

Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator

Abu Naim R. Ahmed, Shouyuan Shi, Mathew Zablocki, Peng Yao, and Dennis W. Prather
Opt. Lett. 44(3) 618-621 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.