Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Chirality-dependent electromagnetically induced transparency based on a double semi-periodic helix metastructure

Not Accessible

Your library or personal account may give you access

Abstract

A chiral metastructure composed of spatially separated double semi-periodic helices is proposed and investigated theoretically and experimentally in this Letter. Chirality-dependent electromagnetically induced transparency (EIT) and a slow light effect in the microwave region are observed from a numerical parameter study, while experimental results from the 3D printing sample yield good agreement with the theoretical findings. The studied EIT phenomenon arises as a result of destructive interference by coupled resonances, and the proposed chiral metastructure can be applied in areas such as polarization communication, pump-probe characterization, and quantum computing areas.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Microwave-assisted Rydberg electromagnetically induced transparency

Thibault Vogt, Christian Gross, T. F. Gallagher, and Wenhui Li
Opt. Lett. 43(8) 1822-1825 (2018)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

Ultraslow long-living plasmons with electromagnetically induced transparency

D. Ziemkiewicz, K. Słowik, and S. Zielińska-Raczyńska
Opt. Lett. 43(3) 490-493 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.