Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modified calculation method of relative sensitivity for fluorescence intensity ratio thermometry

Not Accessible

Your library or personal account may give you access

Abstract

The calculation method of relative sensitivity (Sr) for fluorescence intensity ratio (FIR) thermometry is discussed, taking the F33H63 and H43H63 transitions of Tm3+ as examples. The value of Sr is calculated using its original definition, and is found to largely deviate from the result obtained using the conventional method that is widely used at present. This deviation is found to stem from the neglect of an offset. A modified expression of Sr is proposed, which shows the true performance of FIR technology and makes it possible to precisely compare the Sr values obtained using various methods.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Relative sensitivity variation law in the field of fluorescence intensity ratio thermometry

Leipeng Li, Yuan Zhou, Feng Qin, Yangdong Zheng, Hua Zhao, and Zhiguo Zhang
Opt. Lett. 43(2) 186-189 (2018)

Highly sensitive fluorescence intensity ratio thermometry by breaking the thermal correlation of two emission centers

Yuan Zhou, Leipeng Li, Feng Qin, and Zhiguo Zhang
Opt. Lett. 44(18) 4598-4601 (2019)

Accurate thermometry based on the red and green fluorescence intensity ratio in NaYF4: Yb, Er nanocrystals for bioapplication

Lixin Liu, Feng Qin, Tianquan Lv, Zhiguo Zhang, and Wenwu Cao
Opt. Lett. 41(20) 4664-4667 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.