Abstract

We demonstrate an interferometric method to provide direct, single-shot measurements of cavitation bubble dynamics with nanoscale spatial and temporal resolution with results that closely match theoretical predictions. Implementation of this method reduces the need for expensive and complex ultra-high speed camera systems for the measurement of single cavitation events. This method can capture dynamics over large time intervals with sub-nanosecond temporal resolution and spatial precision surpassing the optical diffraction limit. We expect this method to have broad utility for examination of cavitation bubble dynamics, as well as for metrology applications such as optorheological materials characterization. This method provides an accurate approach for precise measurement of cavitation bubble dynamics suitable for metrology applications such as optorheological materials characterization.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Precise measurement of cavitation dynamics is relevant to phenomena as diverse as sonoluminescence, sonochemistry, molecular transport, fluidic mixing, and light–tissue interactions [15]. These phenomena have been exploited in numerous applications, including ultrasonic cleaning [6], microfluidic mixing [7] and pumping [8], tissue ablation [5], drug delivery [9,10], ocular surgery [11], microrheology [12,13], screening of cellular mechanosignaling [14,15], and measurement of mechanical properties of soft materials [13,16,17].

Empirical studies providing detailed measurement of cavitation bubble dynamics most often utilize high-speed photographic methods [18,19]. Such measurements are critical to understanding complex fluidic processes, assessing computational fluid dynamics models, and optimizing applications that utilize cavitation bubbles [20]. While the capabilities of high-speed photographic and holographic methods have had advanced formidably in recent years, with systems capable of imaging rates as large as 1 trillion frames/second [2124], significant limitations remain, including the total number of frames available, diffraction-limited spatial resolution, and significant expense and complexity. These limitations place these high-speed photographic and holographic methods out of the reach of most researchers in terms of cost and/or needed expertise.

On the other hand, time-resolved photography, achieved through combining individual time-gated images from independent cavitation events, has been used by a larger number of investigators [7,13,2529]. This approach has enabled the reconstruction of complex bubble dynamics over long time intervals with high temporal resolution. However, this approach provides an “average” view of the phenomena, since the data acquisition utilizes images from different events. This effectively blinds the investigator to important factors that may cause shot-to-shot variability such as the stochastic nature of laser-induced plasma formation and the potential effects of medium heterogeneity and/or impurities [30,31].

As an alternative, investigators have developed optical techniques utilizing probe deflection or spatial transmittance modulation to determine cavitation bubble dynamics [3235]. However, these techniques appear to be best suited to probe millimeter scale sized bubbles and generally lack the precision necessary to allow for detailed analysis. Moreover, to obtain quantitative bubble dynamics, these techniques require calibration and/or pairing with photography.

In this Letter, we present a new method for precise measurement of cavitation bubble dynamics with nanoscale temporal resolution and spatial precision. This method utilizes a heterodyne interferometer in a modified Mach–Zehnder configuration [36,37] as shown in Fig. 1. This configuration was selected due to its known sensitivity to small phase differences between the reference and sample arm produced by localized changes in the refractive index such as those produced by a transient cavitation bubble [38].

 figure: Fig. 1.

Fig. 1. Diagram of the Mach–Zehnder interferometric system. M1-M5 are 25 mm silver mirrors used to direct both the pump (Nd:YAG) and interferometer probe (HeNe) beams. A linear polarizer (POL) is used to adjust the power of the HeNe laser beam. 50 mm convex lenses L1 & L2 are used to direct the interferometer probe beam through the bubble. 10 mm convex lenses L3 & L4 are used to focus the combined interferometer beams onto the Si-PIN diodes P1 and P2 whose apertures are shielded using LP filters. 50 mm concave (L5) and 125 mm convex (L6) lenses are used to expand and recollimate the Nd:YAG pump beam.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Measured photodiode signal (blue) and the AOM reference driving signal (orange) from oscilloscope following initiation of a cavitation bubble using a 20 µJ pulse energy. ${I_{\rm{int}}}$ (blue) and ${I_{\rm{aom}}}$ (orange) are shown in segments corresponding to the (a) beginning, (b) middle, and (c) end of a 175 µm diameter bubble created by a 20 µJ laser pulse. The AOM reference signal represents the heterodyne interferometer signal in the absence of a bubble and whose frequency is identical to the photodiode signal prior to the formation of the bubble. Once bubble formation occurs, the detected intensity of the photodiode signal is altered due to light scattering, and the phase is altered due to the varying optical path lengths. The red arrow on the horizontal axis indicates the time of laser pulse delivery to the sample.

Download Full Size | PPT Slide | PDF

To demonstrate its capabilities, we formed cavitation bubbles using laser-induced plasma generation by irradiation using a single 500 ps duration pulse emitted by a frequency-doubled Nd:YAG laser ($\lambda = {{532}}\;{\rm{nm}}$, Teem Photonics PNG-M03012) laser with pulse energies of 2.5–20 µJ. The laser beam output was expanded and delivered to a water-filled cuvette using a 40x, 0.8 numerical aperture water immersion microscope objective (OBJ, Leica HCX APO L ${{40 \times /0.80}}\;{\rm{W}}$ U-V-I). The interferometer was constructed utilizing a polarized continuous wave helium–neon laser (He–Ne, $\lambda = {632.8}\;{\rm{nm}}$, 12 mW, Newport Optics, R-30993). The separate arms of the interferometer are formed using a 110 MHz acousto-optic modulator (AOM, IntraAction, Inc., ATM-1101A1) such that the first-order frequency-shifted beam from the AOM serves as the reference arm, and the unshifted beam serves as the sample arm. The use of the AOM to introduce optical frequencies offset by 110 MHz into the two paths of the interferometer enables the use of optical heterodyne detection to determine the phase difference between the two arms of the interferometer [39]. The sample arm is directed through the cuvette perpendicular so that it passes through the center of the bubble. The two beams are recombined using a non-polarizing 50/50 beam splitting cube (BSC, Thorlabs BS013). Dual-balanced detection [40] is performed using two 1 GHz bandwidth Si-PIN photodiodes (P1 & P2, S5973 Hamamatsu). The photodiode apertures are shielded by long-pass filters (LP) [FGL590M, ThorLabs] to reject stray light at wavelengths ${\lt}{{590}}\;{\rm{nm}}$ that may emanate from the Nd:YAG laser or plasma luminescence from reaching the photodiodes. The photodiode detection circuit is enclosed in a steel Faraday cage to reduce ambient electrical noise. The photodiode output signal is amplified using a broadband low-noise amplifier (AMP, Mini-Circuits ZFL-500LN), digitized by a 2 GHz bandwidth oscilloscope (OSC, LeCroy WaveRunner 6200 A) at a 5GS/s sampling rate, and processed using MATLAB’s Hilbert transform function. Each measurement is initiated using a pulse generator (Stanford Research Systems DG535) to externally trigger the oscilloscope and the emission of a single pulse from the Nd:YAG laser.

Prior to bubble formation, the detected interferometer signal consists of a sinusoidal oscillation at the 110 MHz modulation frequency. The replacement of water with water vapor associated with bubble formation changes the optical path length of the sample arm, as the beam passes through the growing and collapsing vapor cavity. This dynamic change in optical path length is detected by the photodiodes. Prototypical waveforms of both the AOM reference and detected interferometer signals are shown in Fig. 2.

The phase difference between the reference and sample arms is directly proportional to the cavitation bubble size. Figure 3 illustrates the results of the Hilbert transform in which both the phase of the AOM signal, which is equivalent to the phase of the interferometer reference beam, ${\varphi _{\rm{ref}}}$, and the phase of the detected interferometer signal, ${\varphi _{\rm{int}}}$, are plotted versus time. The phase difference between these two signals is shown by ${\varphi _{\rm{bub}}}$. Prior to applying the Hibert transform, the raw interferometer signal is processed using notch filters to exclude 314 and 629 MHz frequency peaks that correspond to the mode hopping frequency of our He–Ne laser. Additionally, a bandpass filter between 2.9 and 220 MHz is used to filter out electrical noise above and below the relevant frequency range of the system.

 figure: Fig. 3.

Fig. 3. Measured ${\varphi _{\rm{ref}}}$ and ${\varphi _{\rm{int}}}$ corresponding to the formation of a 141.3 µm diameter cavitation bubble using a 10 µJ laser pulse. ${\varphi _{\rm{bub}}}$ is the phase difference between the reference and interferometer signals.

Download Full Size | PPT Slide | PDF

The time-resolved bubble radius ${R_B}(t)$ is obtained from the optical phase ${\varphi _{\rm{bub}}}(t)$ corresponding to the dynamic optical path length difference between the reference and sample arms introduced by the bubble. This leads to the following relationship between the time-resolved bubble radius ${R_B}(t)$ and the optical phase introduced by the bubble ${\varphi _{\rm{bub}}}(t)$ [38]:

$${R_B} (t ) = \frac{{\lambda {{{\varphi}}_{\rm{bub}}} (t)}}{{4{{\pi}} ({{n_G} - {n_W}})}},$$
where $\lambda$ is the wavelength of the probe beam, and ${n_G}$ and ${n_W}$ are the refractive indices of the gas within the bubble and surrounding water, respectively.

Once the bubble is initiated and growing in size, the instantaneous frequency of the interferometer signal ${I_{\rm{int}}}$ falls below the 110 MHz heterodyne frequency, since the optical path length in the sample arm is decreasing with time. Conversely, once the bubble reaches its maximum size and begins to collapse, the instantaneous frequency of the interferometer signal ${I_{\rm{int}}}$ rises above a 110 MHz heterodyne signal. The detection limit of our bubble measurement is dependent on the root-mean-square (RMS) phase noise associated with the baseline interferometer signal without bubble formation. This phase noise amounts to 0.1 radians and corresponds to a detection limit of 15 nm.

To assess the measurement accuracy of the interferometer, we compare the bubble dynamics measurements with predictions provided by the Rayleigh–Plesset model [41], which has been demonstrated to provide accurate predictions for the cavitation bubble dynamics in this case [13,27]:

$$\rho \left[{{R_B}\;\frac{{{d^2}\!{R_B}}}{{d{t^2}}} + \frac{3}{2}{{\left({\frac{{d\!{R_B}}}{{dt}}} \right)}^2}} \right] = {p_B} - {p_\infty} - \frac{{2\sigma}}{{{R_B}}} - \frac{{4\mu}}{{{R_B}}}\frac{{d\!{R_B}}}{{dt}},$$
where ${R_B}(t)$ represents the time-resolved bubble radius, ${{\mu}}$ represents the viscosity of water, $\rho$ represents the density of water, and $\sigma$ represents the surface tension at water/vapor interface, with ${p_B}$ and ${p_\infty}$ representing the pressure inside the bubble and surrounding liquid, respectively. Figure 4 shows excellent agreement between the predictions made by the Rayleigh–Plesset model and the interferometric measurement. As a point of comparison, we also provide bubble dynamics data obtained under similar conditions obtained by taking a single bubble image at different time points using time-resolved photography [13,27].
 figure: Fig. 4.

Fig. 4. Time-resolved bubble dynamics for bubbles formed using pulse energies of 2.5, 10, and 20 µJ resulting in maximum bubble radii of 77, 136, and 172 µm, respectively, are shown with theoretical bubble radius predicted by the Rayleigh–Plesset model. In the case of 10 µJ pulse energy, we also show data acquired using images captured from separate events using an intensified CCD camera (Stanford Computer Optics, 4Picos).

Download Full Size | PPT Slide | PDF

A comparison of the two data sets clearly illustrates the increased measurement uncertainty that is incurred when determining the bubble dynamics using time-resolved images obtained using multiple independent trials. Specifically, typical measurement uncertainties for cavitation bubbles of ${\sim}{{140}}\;{\rm{\unicode{x00B5}{\rm m}}}$ maximum radius can range from ${\rm{\pm 3}}\;{\rm{\unicode{x00B5}{\rm m}}}$ at times when the bubble is changing size slowly, to a maximum bubble radius of ${\rm{\pm 40}}\;{\rm{\unicode{x00B5}{\rm m}}}$ during bubble collapse [27,29]. This large variation is primarily due to shot-to-shot variability in the phenomena. However, we do find that our interferometric method has difficulty unwrapping the phase during the final stages of bubble collapse once the velocity of the bubble wall exceeds approximately 84–94 m/s. This collapse velocity corresponds to a heterodyne detection frequency in excess of 154–159 MHz. Interestingly, we have an unidentified source of ambient electronic noise located at 156 MHz. This leads us to believe that our difficulty in resolving the bubble collapse is not intrinsic to our overall approach, but may instead be resolved through better electrical isolation or by using an AOM operating at a lower modulation frequency.

In summary, we have demonstrated an accurate interferometric method for obtaining the complete cavitation bubble dynamics from a single cavitation event with 15 nm radial precision and sub-nanosecond temporal resolution. This approach is more accurate, less costly, and simpler to operate as compared to fast-frame photographic and holographic methods. Moreover, unlike probe beam methods, our method requires no calibration to obtain quantitative measurements. This approach allows for capturing of the full cavitation bubble dynamics extending over tens of microseconds while retaining sub-nanosecond temporal resolution. We anticipate these capabilities will be of broad utility for examination of cavitation bubble dynamics, as well as for metrology applications such as optorheological materials characterization.

Funding

National Institutes of Health/National Institute of General Medical Sciences (R01 GM129426); National Science Foundation (Graduate Research Fellowship Program (BGW)).

Acknowledgment

B. G. Wilson acknowledges support of a National Science Foundation (NSF) Graduate Research Fellowship.

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999). [CrossRef]  

2. Y. T. Didenko, W. B. McNamara III, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000). [CrossRef]  

3. B. Niemczewski, Ultrason. Sonochem. 14, 13 (2007). [CrossRef]  

4. S. Paliwal and S. Mitragotri, Expert Opin. Drug Delivery 3, 713 (2006). [CrossRef]  

5. A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003). [CrossRef]  

6. N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016). [CrossRef]  

7. A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007). [CrossRef]  

8. R. Dijkink and C.-D. Ohl, Lab Chip 8, 1676 (2008). [CrossRef]  

9. C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008). [CrossRef]  

10. A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008). [CrossRef]  

11. A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986). [CrossRef]  

12. J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018). [CrossRef]  

13. J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020). [CrossRef]  

14. J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014). [CrossRef]  

15. J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015). [CrossRef]  

16. P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011). [CrossRef]  

17. C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020). [CrossRef]  

18. W. Lauterborn and W. Hentschel, Ultrasonics 23, 260 (1985). [CrossRef]  

19. W. Lauterborn and W. Hentschel, Ultrasonics 24, 59 (1986). [CrossRef]  

20. W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999). [CrossRef]  

21. C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995). [CrossRef]  

22. W. Lauterborn and T. Kurz, The Micro-World Observed by Ultra High-Speed Cameras, K. Tsuji, ed. (Springer, 2018), pp. 19–47.

23. T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020). [CrossRef]  

24. V. Agrež, T. Požar, and R. Petkovšek, Opt. Lett. 45, 1547 (2020). [CrossRef]  

25. A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996). [CrossRef]  

26. K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004). [CrossRef]  

27. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006). [CrossRef]  

28. P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008). [CrossRef]  

29. J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013). [CrossRef]  

30. N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015). [CrossRef]  

31. Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016). [CrossRef]  

32. P. Gregorčič and J. Možina, Meas. Sci. Technol. 18, 2972 (2007). [CrossRef]  

33. P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008). [CrossRef]  

34. R. Petkovšek and P. Gregorčič, J. Appl. Phys. 102, 044909 (2007). [CrossRef]  

35. L. F. Devia-Cruz, S. Camacho-López, V. R. Cortés, V. Ramos-Muñiz, F. G. Pérez-Gutiérrez, and G. Aguilar, Appl. Opt. 54, 10432 (2015). [CrossRef]  

36. A. D. Yablon, N. S. Nishioka, B. B. Mikić, and V. Venugopalan, Appl. Opt. 38, 1259 (1999). [CrossRef]  

37. S. A. Carp, A. Guerra III, S. Q. Duque Jr., and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004). [CrossRef]  

38. H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).

39. P. Hariharan, Basics of Interferometry (Elsevier, 2010).

40. G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985). [CrossRef]  

41. C. E. Brennan, Cavitation and Bubble Dynamics (Oxford University, 1995).

References

  • View by:
  • |
  • |
  • |

  1. C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
    [Crossref]
  2. Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).
    [Crossref]
  3. B. Niemczewski, Ultrason. Sonochem. 14, 13 (2007).
    [Crossref]
  4. S. Paliwal and S. Mitragotri, Expert Opin. Drug Delivery 3, 713 (2006).
    [Crossref]
  5. A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).
    [Crossref]
  6. N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
    [Crossref]
  7. A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
    [Crossref]
  8. R. Dijkink and C.-D. Ohl, Lab Chip 8, 1676 (2008).
    [Crossref]
  9. C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008).
    [Crossref]
  10. A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
    [Crossref]
  11. A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
    [Crossref]
  12. J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
    [Crossref]
  13. J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
    [Crossref]
  14. J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
    [Crossref]
  15. J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015).
    [Crossref]
  16. P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
    [Crossref]
  17. C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
    [Crossref]
  18. W. Lauterborn and W. Hentschel, Ultrasonics 23, 260 (1985).
    [Crossref]
  19. W. Lauterborn and W. Hentschel, Ultrasonics 24, 59 (1986).
    [Crossref]
  20. W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
    [Crossref]
  21. C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995).
    [Crossref]
  22. W. Lauterborn and T. Kurz, The Micro-World Observed by Ultra High-Speed Cameras, K. Tsuji, ed. (Springer, 2018), pp. 19–47.
  23. T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
    [Crossref]
  24. V. Agrež, T. Požar, and R. Petkovšek, Opt. Lett. 45, 1547 (2020).
    [Crossref]
  25. A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
    [Crossref]
  26. K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
    [Crossref]
  27. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
    [Crossref]
  28. P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
    [Crossref]
  29. J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013).
    [Crossref]
  30. N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
    [Crossref]
  31. Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
    [Crossref]
  32. P. Gregorčič and J. Možina, Meas. Sci. Technol. 18, 2972 (2007).
    [Crossref]
  33. P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008).
    [Crossref]
  34. R. Petkovšek and P. Gregorčič, J. Appl. Phys. 102, 044909 (2007).
    [Crossref]
  35. L. F. Devia-Cruz, S. Camacho-López, V. R. Cortés, V. Ramos-Muñiz, F. G. Pérez-Gutiérrez, and G. Aguilar, Appl. Opt. 54, 10432 (2015).
    [Crossref]
  36. A. D. Yablon, N. S. Nishioka, B. B. Mikić, and V. Venugopalan, Appl. Opt. 38, 1259 (1999).
    [Crossref]
  37. S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
    [Crossref]
  38. H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).
  39. P. Hariharan, Basics of Interferometry (Elsevier, 2010).
  40. G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985).
    [Crossref]
  41. C. E. Brennan, Cavitation and Bubble Dynamics (Oxford University, 1995).

2020 (4)

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
[Crossref]

V. Agrež, T. Požar, and R. Petkovšek, Opt. Lett. 45, 1547 (2020).
[Crossref]

2018 (1)

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

2016 (2)

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

2015 (3)

J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015).
[Crossref]

L. F. Devia-Cruz, S. Camacho-López, V. R. Cortés, V. Ramos-Muñiz, F. G. Pérez-Gutiérrez, and G. Aguilar, Appl. Opt. 54, 10432 (2015).
[Crossref]

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

2014 (1)

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

2013 (1)

J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013).
[Crossref]

2011 (1)

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
[Crossref]

2008 (5)

R. Dijkink and C.-D. Ohl, Lab Chip 8, 1676 (2008).
[Crossref]

C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
[Crossref]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008).
[Crossref]

2007 (4)

R. Petkovšek and P. Gregorčič, J. Appl. Phys. 102, 044909 (2007).
[Crossref]

P. Gregorčič and J. Možina, Meas. Sci. Technol. 18, 2972 (2007).
[Crossref]

B. Niemczewski, Ultrason. Sonochem. 14, 13 (2007).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

2006 (2)

S. Paliwal and S. Mitragotri, Expert Opin. Drug Delivery 3, 713 (2006).
[Crossref]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
[Crossref]

2004 (2)

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
[Crossref]

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
[Crossref]

2003 (1)

A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).
[Crossref]

2000 (1)

Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).
[Crossref]

1999 (3)

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
[Crossref]

A. D. Yablon, N. S. Nishioka, B. B. Mikić, and V. Venugopalan, Appl. Opt. 38, 1259 (1999).
[Crossref]

1996 (1)

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[Crossref]

1995 (1)

C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995).
[Crossref]

1986 (2)

W. Lauterborn and W. Hentschel, Ultrasonics 24, 59 (1986).
[Crossref]

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
[Crossref]

1985 (2)

W. Lauterborn and W. Hentschel, Ultrasonics 23, 260 (1985).
[Crossref]

G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985).
[Crossref]

Abbas, G.

G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985).
[Crossref]

Agrež, V.

Aguilar, G.

Aksu, M.

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

Alghamdi, Y.

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

Allbritton, N. L.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

Ashokkumar, M.

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

Babgi, B.

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

Bae, S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

Barajas, C.

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

Barney, C. W.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Botvinick, E. L.

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015).
[Crossref]

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

Brennan, C. E.

C. E. Brennan, Cavitation and Bubble Dynamics (Oxford University, 1995).

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[Crossref]

Cai, S.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Camacho-López, S.

Carp, S. A.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
[Crossref]

Chan, V.

G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985).
[Crossref]

Ching, H.

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

Compton, J. L.

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013).
[Crossref]

Cortés, V. R.

Coussios, C. C.

C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008).
[Crossref]

Crosby, A. J.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Devia-Cruz, L. F.

Didenko, Y. T.

Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).
[Crossref]

Dijkink, R.

R. Dijkink and C.-D. Ohl, Lab Chip 8, 1676 (2008).
[Crossref]

Dougan, C. E.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Duque, S. Q.

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
[Crossref]

Estrada, J. B.

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

Franck, C.

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

Freidank, S.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

Geisler, R.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

Gregorcic, P.

P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008).
[Crossref]

P. Gregorčič and J. Možina, Meas. Sci. Technol. 18, 2972 (2007).
[Crossref]

R. Petkovšek and P. Gregorčič, J. Appl. Phys. 102, 044909 (2007).
[Crossref]

Guerra, A.

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
[Crossref]

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
[Crossref]

Hariharan, P.

P. Hariharan, Basics of Interferometry (Elsevier, 2010).

Hellman, A. N.

J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
[Crossref]

Henann, D. L.

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

Hentschel, W.

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
[Crossref]

W. Lauterborn and W. Hentschel, Ultrasonics 24, 59 (1986).
[Crossref]

W. Lauterborn and W. Hentschel, Ultrasonics 23, 260 (1985).
[Crossref]

Holzfuss, J.

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
[Crossref]

Johnsen, E.

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

Kazemi-Moridani, A.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Kim, T.

T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
[Crossref]

Kurz, T.

W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
[Crossref]

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

W. Lauterborn and T. Kurz, The Micro-World Observed by Ultra High-Speed Cameras, K. Tsuji, ed. (Springer, 2018), pp. 19–47.

Kuss, C.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
[Crossref]

Lai, H. H.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

Lauterborn, W.

W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
[Crossref]

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995).
[Crossref]

W. Lauterborn and W. Hentschel, Ultrasonics 24, 59 (1986).
[Crossref]

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
[Crossref]

W. Lauterborn and W. Hentschel, Ultrasonics 23, 260 (1985).
[Crossref]

W. Lauterborn and T. Kurz, The Micro-World Observed by Ultra High-Speed Cameras, K. Tsuji, ed. (Springer, 2018), pp. 19–47.

Lee, J.-H.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Liang, J.

T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
[Crossref]

Liang, X. X.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

Lindau, O.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

Linz, N.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

Lu, Y.

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

Luo, J. C.

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015).
[Crossref]

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

Ma, H.

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

Madhavan, J.

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

McLeod, K. R.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

McNamara, W. B.

Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).
[Crossref]

Mettin, R.

W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
[Crossref]

Mikic, B. B.

Mitragotri, S.

S. Paliwal and S. Mitragotri, Expert Opin. Drug Delivery 3, 713 (2006).
[Crossref]

Mocnik, G.

P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008).
[Crossref]

Mohraz, A.

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

Možina, J.

P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008).
[Crossref]

P. Gregorčič and J. Možina, Meas. Sci. Technol. 18, 2972 (2007).
[Crossref]

Niemczewski, B.

B. Niemczewski, Ultrason. Sonochem. 14, 13 (2007).
[Crossref]

Nishioka, N. S.

Ohl, C. D.

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

Ohl, C.-D.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
[Crossref]

R. Dijkink and C.-D. Ohl, Lab Chip 8, 1676 (2008).
[Crossref]

W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
[Crossref]

C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995).
[Crossref]

Paliwal, S.

S. Paliwal and S. Mitragotri, Expert Opin. Drug Delivery 3, 713 (2006).
[Crossref]

Palmer, J. F.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[Crossref]

Pérez-Gutiérrez, F. G.

Petkovšek, R.

V. Agrež, T. Požar, and R. Petkovšek, Opt. Lett. 45, 1547 (2020).
[Crossref]

R. Petkovšek and P. Gregorčič, J. Appl. Phys. 102, 044909 (2007).
[Crossref]

Peyton, S. R.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Philipp, A.

C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995).
[Crossref]

Phillips, K. S.

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

Požar, T.

Preiser, P. R.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
[Crossref]

Quinto-Su, P. A.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
[Crossref]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
[Crossref]

Ramos-Muñiz, V.

Rau, K. R.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
[Crossref]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
[Crossref]

Riggleman, R. A.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Roy, R. A.

C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008).
[Crossref]

Sacligil, I.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Sims, C. E.

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

Song, J.

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

Suslick, K. S.

Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).
[Crossref]

Tew, G. N.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Tian, Y.

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

Tiwari, S.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Trickl, T.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

Venugopalan, V.

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015).
[Crossref]

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013).
[Crossref]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
[Crossref]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
[Crossref]

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
[Crossref]

A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).
[Crossref]

A. D. Yablon, N. S. Nishioka, B. B. Mikić, and V. Venugopalan, Appl. Opt. 38, 1259 (1999).
[Crossref]

Vogel, A.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
[Crossref]

A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[Crossref]

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
[Crossref]

Vogelmann, H.

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

Wang, L. V.

T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
[Crossref]

Wilson, B. G.

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

Xue, B.

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

Yablon, A. D.

Ye, Z.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Yee, T.

G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985).
[Crossref]

Yoon, H. H.

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
[Crossref]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

Yusof, N. S. M.

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

Zappe, H.

H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).

Zheng, R.

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

Zheng, Y.

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Zhu, L.

T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
[Crossref]

Adv. Chem. Phys. (1)

W. Lauterborn, T. Kurz, R. Mettin, and C.-D. Ohl, Adv. Chem. Phys. 110, 295 (1999).
[Crossref]

Anal. Chem. (1)

A. N. Hellman, K. R. Rau, H. H. Yoon, S. Bae, J. F. Palmer, K. S. Phillips, N. L. Allbritton, and V. Venugopalan, Anal. Chem. 79, 4484 (2007).
[Crossref]

Ann. Phys. (1)

C.-D. Ohl, A. Philipp, and W. Lauterborn, Ann. Phys. 507, 26 (1995).
[Crossref]

Annu. Rev. Fluid Mech. (1)

C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

P. Gregorčič, J. Možina, and G. Močnik, Appl. Phys. A 93, 901 (2008).
[Crossref]

Appl. Phys. Lett. (3)

S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004).
[Crossref]

Y. Tian, B. Xue, J. Song, Y. Lu, and R. Zheng, Appl. Phys. Lett. 109, 061104 (2016).
[Crossref]

K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004).
[Crossref]

Biophys. J. (2)

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, Biophys. J. 91, 317 (2006).
[Crossref]

J. L. Compton, A. N. Hellman, and V. Venugopalan, Biophys. J. 105, 2221 (2013).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003).
[Crossref]

Expert Opin. Drug Delivery (1)

S. Paliwal and S. Mitragotri, Expert Opin. Drug Delivery 3, 713 (2006).
[Crossref]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[Crossref]

J. Appl. Phys. (1)

R. Petkovšek and P. Gregorčič, J. Appl. Phys. 102, 044909 (2007).
[Crossref]

J. Biophotonics (1)

A. N. Hellman, K. R. Rau, H. H. Yoon, and V. Venugopalan, J. Biophotonics 1, 24 (2008).
[Crossref]

J. Lightwave Technol. (1)

G. Abbas, V. Chan, and T. Yee, J. Lightwave Technol. 3, 1110 (1985).
[Crossref]

J. Mech. Phys. Solids (1)

J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen, and C. Franck, J. Mech. Phys. Solids 112, 291 (2018).
[Crossref]

Lab Chip (3)

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, Lab Chip 11, 672 (2011).
[Crossref]

R. Dijkink and C.-D. Ohl, Lab Chip 8, 1676 (2008).
[Crossref]

P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton, and V. Venugopalan, Lab Chip 8, 408 (2008).
[Crossref]

Meas. Sci. Technol. (1)

P. Gregorčič and J. Možina, Meas. Sci. Technol. 18, 2972 (2007).
[Crossref]

Nat. Photonics (2)

J. L. Compton, J. C. Luo, H. Ma, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 8, 710 (2014).
[Crossref]

J. C. Luo, E. L. Botvinick, and V. Venugopalan, Nat. Photonics 9, 624 (2015).
[Crossref]

Ophthalmology (1)

A. Vogel, W. Hentschel, J. Holzfuss, and W. Lauterborn, Ophthalmology 93, 1259 (1986).
[Crossref]

Opt. Lett. (1)

Philos. Trans. R. Soc. London A (1)

C. D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, Philos. Trans. R. Soc. London A 357, 269 (1999).
[Crossref]

Phys. Rev. B (1)

N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, Phys. Rev. B 91, 134114 (2015).
[Crossref]

Phys. Rev. Lett. (1)

Y. T. Didenko, W. B. McNamara, and K. S. Suslick, Phys. Rev. Lett. 84, 777 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Riggleman, S. Cai, J.-H. Lee, S. R. Peyton, G. N. Tew, and A. J. Crosby, Proc. Natl. Acad. Sci. USA 117, 9157 (2020).
[Crossref]

Sci. Adv. (1)

T. Kim, J. Liang, L. Zhu, and L. V. Wang, Sci. Adv. 6, eaa6200 (2020).
[Crossref]

Sci. Rep. (1)

J. C. Luo, H. Ching, B. G. Wilson, A. Mohraz, E. L. Botvinick, and V. Venugopalan, Sci. Rep. 10, 13144 (2020).
[Crossref]

Ultrason. Sonochem. (2)

B. Niemczewski, Ultrason. Sonochem. 14, 13 (2007).
[Crossref]

N. S. M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, and M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016).
[Crossref]

Ultrasonics (2)

W. Lauterborn and W. Hentschel, Ultrasonics 23, 260 (1985).
[Crossref]

W. Lauterborn and W. Hentschel, Ultrasonics 24, 59 (1986).
[Crossref]

Other (4)

W. Lauterborn and T. Kurz, The Micro-World Observed by Ultra High-Speed Cameras, K. Tsuji, ed. (Springer, 2018), pp. 19–47.

H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).

P. Hariharan, Basics of Interferometry (Elsevier, 2010).

C. E. Brennan, Cavitation and Bubble Dynamics (Oxford University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Diagram of the Mach–Zehnder interferometric system. M1-M5 are 25 mm silver mirrors used to direct both the pump (Nd:YAG) and interferometer probe (HeNe) beams. A linear polarizer (POL) is used to adjust the power of the HeNe laser beam. 50 mm convex lenses L1 & L2 are used to direct the interferometer probe beam through the bubble. 10 mm convex lenses L3 & L4 are used to focus the combined interferometer beams onto the Si-PIN diodes P1 and P2 whose apertures are shielded using LP filters. 50 mm concave (L5) and 125 mm convex (L6) lenses are used to expand and recollimate the Nd:YAG pump beam.
Fig. 2.
Fig. 2. Measured photodiode signal (blue) and the AOM reference driving signal (orange) from oscilloscope following initiation of a cavitation bubble using a 20 µJ pulse energy. ${I_{\rm{int}}}$ (blue) and ${I_{\rm{aom}}}$ (orange) are shown in segments corresponding to the (a) beginning, (b) middle, and (c) end of a 175 µm diameter bubble created by a 20 µJ laser pulse. The AOM reference signal represents the heterodyne interferometer signal in the absence of a bubble and whose frequency is identical to the photodiode signal prior to the formation of the bubble. Once bubble formation occurs, the detected intensity of the photodiode signal is altered due to light scattering, and the phase is altered due to the varying optical path lengths. The red arrow on the horizontal axis indicates the time of laser pulse delivery to the sample.
Fig. 3.
Fig. 3. Measured ${\varphi _{\rm{ref}}}$ and ${\varphi _{\rm{int}}}$ corresponding to the formation of a 141.3 µm diameter cavitation bubble using a 10 µJ laser pulse. ${\varphi _{\rm{bub}}}$ is the phase difference between the reference and interferometer signals.
Fig. 4.
Fig. 4. Time-resolved bubble dynamics for bubbles formed using pulse energies of 2.5, 10, and 20 µJ resulting in maximum bubble radii of 77, 136, and 172 µm, respectively, are shown with theoretical bubble radius predicted by the Rayleigh–Plesset model. In the case of 10 µJ pulse energy, we also show data acquired using images captured from separate events using an intensified CCD camera (Stanford Computer Optics, 4Picos).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R B ( t ) = λ φ b u b ( t ) 4 π ( n G n W ) ,
ρ [ R B d 2 R B d t 2 + 3 2 ( d R B d t ) 2 ] = p B p 2 σ R B 4 μ R B d R B d t ,

Metrics