Abstract

Diffractive optical surfaces have attractive properties for use in optical systems, like reducing weight and correcting for chromatic aberrations, but fabrication of high-quality glass diffractive optics is challenging, preventing it from being widely adopted in commercial applications. In this Letter, we report on a fabrication method to address molding challenges for high-surface-quality diffractive glass optics at molding temperatures up to 550°C, including selection of mold material, mold fabrication, precision glass molding, durability, and stability of the mold. To enable optimal mold machining and easy mold release, nickel phosphorous (NiP) is chosen as the plating material for its cutting performance and anti-adhesion properties, and copper-nickel C71500 (CuNi) is selected as the mold substrate because its coefficient of thermal expansion (CTE) is close to NiP. By the proposed method, diffractive glass optics with 2 nm Sa surface roughness is demonstrated.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Diffractive surfaces are used in modern optical systems due to their small size, low weight, wavefront manipulation, and dispersive properties [1]. Glass is an attractive material for diffractive components because of its high mechanical and thermal stability, as well as high chemical resistance [2,3]. Among various manufacturing technologies, precision glass molding (PGM) is a promising technique for fabricating optical glass components with microstructures at the wavelength level [4,5]. However, production of high-quality diffractive structures in glass surfaces is very challenging due to micro/nano-mold fabrication issues and adhesion between the glass and the mold materials at high temperatures [6]. In this study, we propose a PGM method that considers mold material selection, mold fabrication, plating thermal stability, and adhesion during the molding process to realize L-BSL7 glass diffractive optical elements with high surface quality.

PGM mold fabrication methods include precision grinding/polishing and single-point-diamond turning (SPDT). However, it is difficult to fabricate micrometer-level structures in common PGM mold materials like tungsten carbide using grinding/polishing approach due to grinding wheel interference and the difficulty in fabricating miniature sized grinding tools [6,7]. SPDT is appropriate for fabrication of circularly symmetric microstructures, but the diamond tool is limited to cutting non-ferrous materials [8]. Photolithographic fabrication of diffractive optics with glassy carbon molds has been suggested, but these structures are captive to wafer-based flat substrate geometries [9]. Kim et al. [10,11] successfully fabricated a microlens array (rms 4.6 nm) and a Fresnel lens (rms 16 nm) with a glassy carbon mold fabricated by carbonization of a replicated precursor. Although these surface roughness values are adequate for non-imaging applications, a higher-quality replication is desirable.

In the PGM glass molding process, it is common to use high temperature (${\gt}{{500}}^\circ {\rm{C}}$), large pressing load (${\gt}{0.5}\;{\rm{kN}}$), and long contact time (${\gt}{{30}}\;{\min}$). For example, the moldable optical glass L-BSL7 (Ohara Corporation) has a transition temperature ${\rm{Tg}} = {{498}}^\circ {\rm{C}}$, and the normal molding temperature is 10% above ${\rm{Tg}}$ (${\sim}{{548}}^\circ {\rm{C}}$). Under such conditions, mold thermal stability is challenging to maintain, and glass often adheres to the mold, which reduces surface quality of the molded glass and shortens service life of the mold.

According to glass viscoelasticity studies [3,12], pure nickel exhibits excellent lubricant and anti-adhesive properties when used with borosilicate glass at high molding temperatures. Therefore, it should be possible to use Ni-based materials for plating mold surfaces to make micro-optical structures. Fortunately, nickel phosphorous (NiP) alloy has very high Ni element percentage (${\sim}{{90}}\%$), which is similar to nickel with respect to lubrication and anti-adhesion properties. In addition, it is well known that NiP produces high-quality surfaces by SPDT with negligible tool wear and has become an industry standard as the plating layer for polymer injection optical mold inserts [8]. Yan et al. [13] and Zhou et al. [14] have applied NiP as a mold plating in PGM, and they successfully molded glass optics at relatively low molding temperatures (330°C and 380°C, respectively).

When NiP {coefficient of thermal expansion [${\rm{CTE}} = {{17}}$ (units of ${{10}}^{- 6}$)]} is used as the plating material on common stainless or alloy steel mold substrates (Stavax or Kovar), plating failure occurs due to thermal stresses at high working temperatures [15]. To test these materials, thermal stability experiments are conducted at 550°C with flat Stavax steel (${\rm{CTE}} = {11.4}$) and Kovar alloy (${\rm{CTE}} = {6.2}$) mold substrates coated with NiP. As shown by the scanning electron microscope (SEM) and optical surface profilometer scans in Figs. 1(a) and 1(b), respectively, the NiP plating layer cracked after one molding cycle for both cases, and more serious cracks occurred for the Kovar substrate. A thermal expansion simulation of these structures indicates that residual thermal stresses exceed the strength limit of NiP (200–320 MPa after heat treatment between 300–600°C [15]) in both cases, and the thermal stress value of the Kovar substrate (1379 MPa) is much higher than that of the Stavax substrate (400 MPa).

 

Fig. 1. (a) Stavax substrate and (b) Kovar substrate coated with NiP.

Download Full Size | PPT Slide | PDF

To address mold thermal stability, copper-nickel C71500 (CuNi, a non-ferrous alloy) is investigated as the mold substrate because its CTE (16.2) is close to that of NiP. Also, CuNi can be diamond turned directly for an accurate mold surface. However, the cutting performance of CuNi is inferior to that of NiP, which is illustrated by a simple experiment, where under the same cutting condition (spindle speed 2000 RPM, tool tip radius 0.107 mm and feed rate 5 mm/min), the best achievable root mean square (rms) surface roughness of NiP is 1 nm, while the CuNi surface has a corresponding result of 4 nm (Fig. 2).

 

Fig. 2. Root mean square (rms) surface roughness of diamond turned (a) CuNi and (b) NiP surfaces.

Download Full Size | PPT Slide | PDF

Combination of the CuNi substrate and NiP plating in this paper is utilized to achieve high surface accuracy with low roughness and high thermal stability, as well as good anti-adhesive characteristics of the mold. As illustrated in Fig. 3(a), the molds are fabricated in three steps: mold substrate fabrication, NiP electroless plating, and diamond turning. First, a CuNi mold substrate is machined to a basic profile of the target lens. Then a 200 µm thick NiP is deposited on the mold substrate by an electroless plating process. In order to have more stable crystal structure and maximum hardness, a suitable heat treatment process is implemented after electroless plating [15]. Percentages of phosphorus and nickel in the processed plating are measured by energy dispersive spectroscopy (EDS) to be 8.56% and 91.44%, respectively. According to the EDS measurement, the NiP crystal structure is in the Ni3P phase [16].

 

Fig. 3. (a) Mold fabrication scheme; (b) image of the DFL mold; (c) profiles of the DFL structures.

Download Full Size | PPT Slide | PDF

In the third step, SPDT is used to make three different surfaces in NiP for separate experiments: flat, triangle, and diffractive Fresnel lens (DFL). An additional mold release agent is not required, which could cause noticeable deviation of mold micro-Fresnel features [17]. The surface finish of these three structures is evaluated by a Zygo profilometer. Figure 3(b) is an image of the fabricated DFL mold. The surface roughness of these three structures is the same (Sa 2 nm, rms 3 nm), which verifies the high-quality and robust SPDT cutting performance of NiP.

Representative profiles of the molds are compared with the design profiles, as shown in Fig. 3(c) for the DFL, which indicates that the structures are accurately cut into the molds. For the triangle and DFL structures, the heights are slightly smaller than the design values by about 0.03 µm, which could be caused by the finite diamond tool radius (82 µm). Considering the low rms value and small deviation from the design height, we conclude that SPDT is a good choice to fabricate high-quality diffractive structures in a NiP layer.

Molding experiments are performed on a Moore Nanotech GMP140 machine. As shown in Fig. 4(a), the molding procedure has four phases after vacuum and purging, which are heating and soaking, pressing, annealing, and releasing. The mold assembly consists of the upper and lower mold halves and an alignment sleeve, as shown in Fig. 4(b). The molding module consists of the mold assembly, one pressing platen, and one support platen, as shown in Fig. 4(c). Polished cylindrical L-BSL7 glass specimens are used as molding preforms. The cylinders have an initial 8 mm diameter and 4.6 mm height, and the Sa surface roughness of the polished surface is 2 nm.

 

Fig. 4. (a) PGM cycle; (b) mold parts and glass specimen; (c) molding module; (d) molded pieces.

Download Full Size | PPT Slide | PDF

${\rm{N}}_2$ is used as a protective atmosphere. In the heating phase, the mold assembly is gradually heated to 550°C, and afterward a 180 s soaking time is used to homogenize the glass and mold temperatures. In the pressing phase, a compressive load (300 N) is imposed onto the mold for 120 s. Finally, the molded glass piece is released from the mold after a controlled annealing process. The three structures are molded sequentially with same molding procedure and settings.

The first experiment is to investigate surface quality variation and adhesion properties of the flat mold. Figures 5(a) and 5(b) are the measured surface results of the mold surface and the glass specimen surface, respectively. Their Sa surface roughness and peak-to-valley (pv) roughnesses are 2 nm and 33 nm, respectively, for the mold, and 2 nm and 203 nm, respectively, for the glass. The glass surface in Fig. 5(b) has a few randomly distributed sharp peaks, which are residual features from the grinding and polishing process. After molding, the glass specimen in Fig. 4(d) retains a cylindrical shape with a reduced height, and there is no perceptible adhesion. However, both the mold and glass surface finishes are deteriorated slightly, with the Sa and pv surface roughness of the mold surface increasing to 4 nm and 164 nm, respectively, and that of the molded glass surface to 4 nm and 270 nm, respectively.

 

Fig. 5. PGM of flat surface: (a) mold surface before; (b) glass surface before; (c) mold surface after; (d) glass surface after.

Download Full Size | PPT Slide | PDF

The triangle structure has a width of 188 µm and a maximum height of 1.28 µm, which is nearly the same as the low-angle side of the smallest period of the DFL structure. After molding, the glass specimen is released from the mold easily with no perceptible adhesion. The measured profile of the molded structure is shown in Fig. 6(a), where the Sa surface roughness values over three regions are the same (2 nm). The design profile as well as the measured profiles of the mold and molded glass are plotted in Fig. 6(b), showing that the mold structure is successfully transferred to glass with a slight rounding of the tip, which is less than 0.006 µm between the mold and the molded glass. No detectable deterioration of the mold was observed after five molding cycles.

 

Fig. 6. PGM of micro triangle structure: (a) measured surface quality; (b) surface profiles; (c) contacted regions.

Download Full Size | PPT Slide | PDF

Note that the molded triangle structure has a lower Sa roughness (2 nm) than the molded flat surface (4 nm). This difference is not intuitive because the triangle structure is more complex than the flat structure. The difference is ascribed to two possible reasons. First, deteriorated surface quality could occur at high molding temperatures through changes of the plating crystalline structure, diffusion of elements between glass and plating, or chemical reactions [18]. However, our results do not detect elemental diffusion or chemical changes in the glass or plating. Furthermore, if plating crystalline structure changes due to high temperatures during the molding process, the triangle surface should have deteriorated as well, which is not observed. Therefore, these mechanisms are not the cause for roughness differences. Second, for flat surface molding, the entire flat glass surface is in contact with the flat mold surface throughout the molding phase, as shown in Fig. 6(c), unlike the triangle structure. Longer surface-to-surface contact time could induce small plastic deformations of the flat mold plating on the nano-level. This issue has been observed by other researchers, but not reported directly as a cause to increased surface roughness [19,20]. In our case, sharp peaks on the preform surface could exacerbate the differences between the flat and triangle structures due to this effect.

The DFL structure is similar to the triangle structure, except that it has sharp transitions in a near sawtooth profile, as shown in Fig. 7(a). These vertical segments make the mold release more challenging than the triangle structure. In this study, the CuNi substrate and NiP layer have relatively higher CTEs (16.2 and 17, respectively) than that of L-BSL7 glass (${\rm{CTE}} = {{11}}$, a mean CTE value from room temperature to molding temperature), so during the cooling process the mold contracts more than the glass, as shown in Fig. 7(a), which is beneficial for releasing the DFL.

 

Fig. 7. PGM of diffractive structure: (a) contraction comparison between mold and glass; (b) molded glass surface quality; (c) profile.

Download Full Size | PPT Slide | PDF

DFL molding results with a scan area 800 µm by 400 µm in size is selected for analyzing roughness and profile accuracy, as shown in Fig. 7(b). As with the triangle structure molding, peaks of the DFL mold structure keep glass from directly contacting the mold surface before the glass is softened sufficiently. Correspondingly, surface roughness values over three different regions are identical (Sa 2 nm). Figure 7(c) shows that the molded DFL structure is successfully replicated by comparing the design, mold, and molded glass profiles. Filling accuracy with deviation less than 0.05 µm between glass and mold is achieved.

One potential issue during molding is that diffusion may occur between plating and glass. If this happens, the surface properties of the mold and molded glass seriously deteriorate. In order to know the chemical stability and durability of the NiP plating, EDS measurements are implemented, including chemical analysis of the plating layer and glass. As shown in Fig. 8(a), no diffused components from the glass, like Na, K, Al, are detected in the NiP plating. Similarly, the associated testing spectrum of the flat-structure molded glass in Fig. 8(b) does not show phosphorous elements. The weight percentages of chemical components both in the NiP plating and the molded glasses with different shapes do not show a noticeable variation in any of the three structures, as shown in Figs. 8(c) and 8(d). This result indicates that the chemical properties of NiP are stable during the molding process.

 

Fig. 8. EDS testing: (a) spectrum of NiP plating (flat); (b) spectrum of the glass (flat); (c) NiP plating composition; (d) glass composition.

Download Full Size | PPT Slide | PDF

In conclusion, this Letter describes an effective PGM method for molding diffractive structures. To realize high thermal stability of the mold, CuNi and NiP are selected as the mold substrate and plating materials, respectively, for their close CTEs. With the selected materials, excellent SPDT cutting performance and easy mold release are realized. Optical properties of the mold and glass replica are stable with respect to diffusion and chemical reaction. Using L-BSL7 glass as an example, a DFL structure with a 1.2 µm transition height is successfully replicated, with height deviation less than 0.05 µm and Sa surface roughness 2 nm (determined by the mold). It is expected that similar results can be achieved with other low-Tg glasses, if the maximum temperature does not exceed 550°C. More molding repeats for application of mass production could be studied in the future.

Funding

Gordon and Betty Moore Foundation (7728); National Institutes of Health (S10OD018061).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.

2. C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014). [CrossRef]  

3. J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019). [CrossRef]  

4. T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018). [CrossRef]  

5. P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011). [CrossRef]  

6. P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013). [CrossRef]  

7. A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019). [CrossRef]  

8. M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019). [CrossRef]  

9. Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

10. Y. K. Kim, M. R. Haq, and S.-M. Kim, Opt. Express 27, 1553 (2019). [CrossRef]  

11. Y. K. Kim, J. H. Ju, and S.-M. Kim, Opt. Express 26, 14936 (2018). [CrossRef]  

12. D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013). [CrossRef]  

13. J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009). [CrossRef]  

14. T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015). [CrossRef]  

15. F. Delaunois, V. Vitry, and L. Bonin, Fundamentals to Applications (CRC Press, 2019).

16. M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019). [CrossRef]  

17. K. Prater, J. Dukwen, T. Scharf, H. P. Herzig, S. Plöger, and A. Hermerschmidt, Opt. Mater. Express 6, 3407 (2016). [CrossRef]  

18. G. Kyriakos, The Failure Mechanisms of Coated Precision Glass Molding Tools (Apprimus Wissenschaftsverlag, 2015).

19. J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016). [CrossRef]  

20. F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.
  2. C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
    [Crossref]
  3. J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
    [Crossref]
  4. T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
    [Crossref]
  5. P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
    [Crossref]
  6. P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013).
    [Crossref]
  7. A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019).
    [Crossref]
  8. M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019).
    [Crossref]
  9. Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.
  10. Y. K. Kim, M. R. Haq, and S.-M. Kim, Opt. Express 27, 1553 (2019).
    [Crossref]
  11. Y. K. Kim, J. H. Ju, and S.-M. Kim, Opt. Express 26, 14936 (2018).
    [Crossref]
  12. D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
    [Crossref]
  13. J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
    [Crossref]
  14. T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
    [Crossref]
  15. F. Delaunois, V. Vitry, and L. Bonin, Fundamentals to Applications (CRC Press, 2019).
  16. M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
    [Crossref]
  17. K. Prater, J. Dukwen, T. Scharf, H. P. Herzig, S. Plöger, and A. Hermerschmidt, Opt. Mater. Express 6, 3407 (2016).
    [Crossref]
  18. G. Kyriakos, The Failure Mechanisms of Coated Precision Glass Molding Tools (Apprimus Wissenschaftsverlag, 2015).
  19. J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
    [Crossref]
  20. F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
    [Crossref]

2019 (5)

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019).
[Crossref]

M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019).
[Crossref]

Y. K. Kim, M. R. Haq, and S.-M. Kim, Opt. Express 27, 1553 (2019).
[Crossref]

M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
[Crossref]

2018 (2)

Y. K. Kim, J. H. Ju, and S.-M. Kim, Opt. Express 26, 14936 (2018).
[Crossref]

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

2016 (3)

K. Prater, J. Dukwen, T. Scharf, H. P. Herzig, S. Plöger, and A. Hermerschmidt, Opt. Mater. Express 6, 3407 (2016).
[Crossref]

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

2015 (1)

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

2014 (1)

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

2013 (2)

P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013).
[Crossref]

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

2011 (1)

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

2009 (1)

J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
[Crossref]

Allen, Y. Y.

P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013).
[Crossref]

Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

Bernhardt, F.

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

Bonin, L.

F. Delaunois, V. Vitry, and L. Bonin, Fundamentals to Applications (CRC Press, 2019).

Buchtík, M.

M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
[Crossref]

Chen, Y.

Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

Dambon, O.

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Delaunois, F.

F. Delaunois, V. Vitry, and L. Bonin, Fundamentals to Applications (CRC Press, 2019).

Demmer, A.

Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

Dukwen, J.

K. Prater, J. Dukwen, T. Scharf, H. P. Herzig, S. Plöger, and A. Hermerschmidt, Opt. Mater. Express 6, 3407 (2016).
[Crossref]

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

Dyakonov, A. A.

A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019).
[Crossref]

Friedrichs, M.

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

Georgiadis, K.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Geyer, U.

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

Guenther, T.

M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019).
[Crossref]

Haq, M. R.

He, P.

P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013).
[Crossref]

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Hellwig, A.

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

Hermerschmidt, A.

Herzig, H. P.

Heßling, T.

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

Hu, J.

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

Huang, W.

Hübner, M.

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

Jiang, X.

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

Joseph, P. F.

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

Joshi, D.

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

Ju, J. H.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.

Kim, S.-M.

Kim, Y. K.

Klocke, F.

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

Kobayashi, R.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

Krystýnová, M.

M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
[Crossref]

Kuriyagawa, T.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
[Crossref]

Kyriakos, G.

G. Kyriakos, The Failure Mechanisms of Coated Precision Glass Molding Tools (Apprimus Wissenschaftsverlag, 2015).

Lee, L. J.

Li, L.

P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013).
[Crossref]

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Liang, Z.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

Liu, G.

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

Liu, X.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

Luo, H.

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

Másilko, J.

M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
[Crossref]

Merzlikin, S. V.

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

Mosaddegh, P.

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

Musgraves, J. D.

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

Nguyen, T. V.

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.

Oowada, T.

J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
[Crossref]

Paßlick, C.

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

Patra, K.

A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019).
[Crossref]

Plöger, S.

Pongs, G.

Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

Pratap, A.

A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019).
[Crossref]

Prater, K.

Prather, D. W.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.

Richardson, K. C.

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

Roeder, M.

M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019).
[Crossref]

Rohwerder, M.

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

Scharf, T.

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.

Tang, M.

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

Vitry, V.

F. Delaunois, V. Vitry, and L. Bonin, Fundamentals to Applications (CRC Press, 2019).

Wang, F.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Wang, X.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

Wasserbauer, J.

M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
[Crossref]

Yan, J.

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
[Crossref]

Yen, Y.-C.

Yi, A.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

Yu, J.

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

P. He, L. Li, J. Yu, W. Huang, Y.-C. Yen, L. J. Lee, and Y. Y. Allen, Opt. Lett. 38, 2625 (2013).
[Crossref]

Zhang, Y.

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

Zhou, T.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
[Crossref]

Zhu, Z.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

Zimmermann, A.

M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019).
[Crossref]

Coatings (1)

M. Buchtík, M. Krystýnová, J. Másilko, and J. Wasserbauer, Coatings 9, 461 (2019).
[Crossref]

Int. J. Adv. Manuf. (2)

A. Pratap, K. Patra, and A. A. Dyakonov, Int. J. Adv. Manuf. 104, 63 (2019).
[Crossref]

F. Klocke, O. Dambon, M. Rohwerder, F. Bernhardt, M. Friedrichs, and S. V. Merzlikin, Int. J. Adv. Manuf. 87, 43 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Yu, H. Luo, Y. Zhang, T. V. Nguyen, X. Jiang, and J. Hu, J. Am. Ceram. Soc. 102, 6606 (2019).
[Crossref]

J. Mater. Process. Technol. (1)

J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, J. Mater. Process. Technol. 209, 4802 (2009).
[Crossref]

J. Opt. (1)

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, J. Opt. 13, 085703 (2011).
[Crossref]

J. Rheol. (1)

D. Joshi, P. Mosaddegh, J. D. Musgraves, K. C. Richardson, and P. F. Joseph, J. Rheol. 57, 1367 (2013).
[Crossref]

Micromachines (2)

M. Roeder, T. Guenther, and A. Zimmermann, Micromachines 10, 233 (2019).
[Crossref]

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, Micromachines 9, 337 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Precis. Eng. (1)

T. Zhou, J. Yan, Z. Liang, X. Wang, R. Kobayashi, and T. Kuriyagawa, Precis. Eng. 39, 25 (2015).
[Crossref]

Proc. SPIE (1)

C. Paßlick, A. Hellwig, U. Geyer, T. Heßling, and M. Hübner, Proc. SPIE 9192, 919210 (2014).
[Crossref]

Wear (1)

J. Dukwen, M. Friedrichs, G. Liu, M. Tang, O. Dambon, and F. Klocke, Wear 364, 144 (2016).
[Crossref]

Other (4)

G. Kyriakos, The Failure Mechanisms of Coated Precision Glass Molding Tools (Apprimus Wissenschaftsverlag, 2015).

F. Delaunois, V. Vitry, and L. Bonin, Fundamentals to Applications (CRC Press, 2019).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004), Vol. 62.

Y. Chen, Y. Y. Allen, F. Klocke, G. Pongs, and A. Demmer, in ASPE Annual Conference (2007), pp. 15–20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Stavax substrate and (b) Kovar substrate coated with NiP.
Fig. 2.
Fig. 2. Root mean square (rms) surface roughness of diamond turned (a) CuNi and (b) NiP surfaces.
Fig. 3.
Fig. 3. (a) Mold fabrication scheme; (b) image of the DFL mold; (c) profiles of the DFL structures.
Fig. 4.
Fig. 4. (a) PGM cycle; (b) mold parts and glass specimen; (c) molding module; (d) molded pieces.
Fig. 5.
Fig. 5. PGM of flat surface: (a) mold surface before; (b) glass surface before; (c) mold surface after; (d) glass surface after.
Fig. 6.
Fig. 6. PGM of micro triangle structure: (a) measured surface quality; (b) surface profiles; (c) contacted regions.
Fig. 7.
Fig. 7. PGM of diffractive structure: (a) contraction comparison between mold and glass; (b) molded glass surface quality; (c) profile.
Fig. 8.
Fig. 8. EDS testing: (a) spectrum of NiP plating (flat); (b) spectrum of the glass (flat); (c) NiP plating composition; (d) glass composition.

Metrics