Abstract

We experimentally demonstrate mid-infrared (MIR) supercontinuum (SC) generation spanning 2.0 to 15.1 μm in a 3 cm-long chalcogenide step-index fiber. The pump source is generated by the difference frequency generation with a pulse width of 170fs, a repetition rate of 1000Hz, and a wavelength range tunable from 2.4 to 11 μm. To the best of our knowledge, this is the broadest MIR SC generation observed so far in optical fibers. It facilitates fiber-based applications in sensing, medical, and biological imaging areas.

© 2016 Optical Society of America

Supercontinuum (SC) generation in optical fibers was first observed in 1976 [1]. Since then, researchers have been engaged in developing optical devices operating at wavelengths in the visible light and near-infrared (NIR) region [27]. However, to further realize SC spectral evolution into the mid-infrared (MIR) region in silica optical fibers is a challenging task due to the strong material absorption above 2.4 μm. In order to address this limit, the pursuit of suitable host material is attracting growing interest, and many candidates have been proposed, such as fluoride, tellurite, and chalcogenide glasses [813]. To date, the broadest MIR SC generation in fluoride fibers is from ultraviolet to 6.28 μm [14], and the broadest in tellurite fibers is from 789 to 4870 nm [15]. Chalcogenide glasses prove to be a more promising candidate, for they present a wider transparency window over 20 μm, and possess a higher nonlinear material index up to tens or hundreds of times as those of fluoride and tellurite glasses [11,1620]. Numerical simulations have demonstrated chalcogenide fibers’ potential for MIR SC generation [2124], and Petersen et al. in 2014 experimentally observed the broadest MIR SC spectrum, spanning 1.4 to 13.3 μm [25]. Based on previous work, we strive to extend the SC evolution in MIR region from the following aspects: designing chalcogenide fibers with near-zero flattened dispersion, shifting the pump wavelength to the long wavelength region, and decreasing the fiber length to reduce the loss.

In this Letter, we demonstrate MIR SC generation in a 3 cm-long chalcogenide step-index fiber. The step-index fiber with near-zero flattened dispersion was designed based on As2Se3 and AsSe2, and fabricated by the rod-in-tube drawing technique. The pump source was generated by the difference frequency generation (DFG), which had a pulse width of 170fs, a repetition rate of 1000Hz, and a wavelength range tunable from 2.4 to 11 μm. The resulting SC generation was investigated both experimentally and numerically; both methods exhibited agreement with each other.

The fiber design and optimization were carried out to achieve features of high nonlinearity and near-zero flattened dispersion. As2Se3 and AsSe2 glasses were selected for the core and cladding respectively, because they have good compatibility, higher nonlinear index, and wider transparency window compared with other chalcogenide glasses (Ge15Ga3Sb13S69 and As2S5) [26,27]. Figure 1(a) shows the measured linear material refractive indices of two glasses, as well as the numerical aperture (NA). For the chalcogenide step-index fiber, the variation of the dispersion with the change of the core diameter was analyzed using the full-vectorial mode solver of a commercial software (Lumerical MODE Solution), as shown in Fig. 1(b). We can see that the number of zero-dispersion wavelength (ZDW) reduces from two to one, with the core diameter increasing from 11 to 17 μm. For fibers with two ZDWs, there is a possibility that red-shifted dispersive waves may be emitted by solitons over the second ZDW region. However, the second ZDW would definitely restrain the soliton evolution. Taking this into consideration, fiber with the diameter of 15 μm, one ZDW, and near-zero flattened dispersion was selected. The resulting ZDW was calculated to be 5.5μm and the wavelength range between the dispersion of ±7.5ps·km1·nm1 was from 4.5 to 20 μm. Figure 1(c) shows the variation of confinement loss with the change of the core diameter, which confirmed that the chalcogenide step-index fiber with the diameter of 15 μm can support MIR transmission.

 figure: Fig. 1.

Fig. 1. (a) Measured refractive indices of As2Se3 (core) and AsSe2 (cladding) as well as calculated NA. (b) Calculated dispersions for the fundamental mode of the chalcogenide step-index fiber with the core diameter changing from 11 to 17 μm. (c) Calculated confinement losses of the chalcogenide step-index fiber with the core diameter changing from 11 to 17 μm.

Download Full Size | PPT Slide | PDF

The chalcogenide step-index fiber was fabricated by the rod-in-tube drawing technique, and the AsSe2 and As2Se3 glass rods were offered by Furukawa Denshi Co., Ltd. The fabrication required four steps. Step 1, an 8 cm-long AsSe2 rod with the diameter of 12mm, was ultrasonically drilled to form a tube with a 3.5 mm-diameter hole in the center. Step 2, an 8 cm-long As2Se3 rod with the diameter of 12mm, was elongated to the diameter of 3.5mm and inserted into the AsSe2 tube produced in Step 1. Step 3, the AsSe2 tube with As2Se3 rod in the hole, was elongated to get a preform with the diameter of 3mm. Finally, the preform was inserted into another AsSe2 tube with the hole diameter of 3mm, and drawn into the fiber at the temperature of 198°C. During the fiber-drawing process, the nitrogen gas pressure was set as negative to avoid interstitial hole formation. Figure 2(a) shows photos of the AsSe2 tube, the initial As2Se3 rod, and the elongated As2Se3 rod. Figure 2(b) is the measured As2Se3 rod loss and the transmission spectrum of a 2 mm-thick As2Se3 glass sample. The former was obtained through the cut-back technique, and the latter was recorded using a Fourier-transform infrared (FT-IR) spectrophotometer (PerkinElmer Spectrum 100) in the infrared range of 2.5–25 μm. We can see there are several absorption bands from 2.5 to 19 μm, which correspond to the residual O-H, As-O, Se-O, and Se-H pollution in the glass. In particular, the loss resulted from Se-H absorption band centering around 15.2 μm is prominently strong. Consequently, in order to minimize the influence from the loss, the fiber length was reduced to 3 cm in this experiment. Figure 2(c) shows the cross section of the chalcogenide step-index fiber taken by a scanning electron microscope (SEM), in which the As2Se3 core diameter was measured to be 15μm. Based on the nonlinear index n2=1.1×1017m2W1 [28], the effective mode areas and the nonlinear coefficients of the fundamental mode from 2 to 20 μm were calculated, as shown in Fig. 2(d).

 figure: Fig. 2.

Fig. 2. (a) Photos of the AsSe2 tube, the As2Se3 rod, and the elongated As2Se3 rod. (b) Measured transmission spectrum of a 2-mm-thick As2Se3 sample and the As2Se3 rod loss. (c) Cross section of the chalcogenide step-index fiber taken by SEM. (d) Calculated effective mode areas and nonlinear coefficients of the fundamental mode.

Download Full Size | PPT Slide | PDF

The experimental setup for SC generation in the 3 cm-long chalcogenide step-index fiber is shown in Fig. 3(a). The MIR pump source started from a Ti:Sapphire mode-locked seed laser (Coherent Mira 900), which delivered seed pulses with a spectrum bandwidth of 12nm at 800 nm to a Coherent Legend pulse picker regenerative amplifier for boosting the pulse energy to about 1 mJ at a low repetition rate of 1000 Hz. The amplified laser pulse passed through a traveling-wave optical parametric amplifier of superfluorescence (TOPAS) to generate a signal beam tunable from 1160 to 1600 nm and an idler beam tunable from 1600 to 2600 nm. The signal and idler beams were collinearly combined together and passed through a DFG unit to generate a MIR pulse tunable from 2.5 to 11 μm and with a pulse width of 170fs (full-width at half-maximum, FWHM). The DFG average powers at different wavelengths are shown in Fig. 3(b). A long-pass filter was used to separate the DFG pulse away from the residual signal and idler. After the filter, the beam was free-space coupled into a 3 cm-long chalcogenide step-index fiber by an aspheric lens (AL) with a focal length of 11mm and a NA of 0.18 (THORLABS, C021TME-F, 8–12 μm). The transmission efficiency of the lens was higher than 80%, and the coupling efficiency was measured to be 27%. The output beam from the fiber was injected into a monochromator by a lens and a gold-coated parabolic mirror (PM, THORLABS, 800 nm–20 mm). And a nitrogen gas filled the monochromator to avoid gas absorption, such as CO2. The liquid nitrogen cooled mercury cadmium telluride (MCT, HgCdTe) detector (HAMAMATSU, P5274-01) had a measurement range of 122μm. The SC signal was amplified by a lock-in amplifier and the spectrum was taken by a computer-based spectrometer.

 figure: Fig. 3.

Fig. 3. (a) Experimental setup for MIR SC generation in the 3 cm-long chalcogenide step-index fiber. LPF: long-pass filter; PM: parabolic mirror. (b) DFG average powers at different wavelengths.

Download Full Size | PPT Slide | PDF

During the experimental process, in order to minimize the fiber loss (especially for Se-H absorption band) and maximize the DFG pump power, the wavelength 9.8μm was chosen, which was in the anomalous dispersion region of the fiber. The average pump power measured directly from DFG was 3.1mW. Considering the Fresnel reflection (22%), the estimated coupling peak power was 2.89MW. Because the generated MIR SC spectrum was uncommonly wide, three gratings with different blaze wavelengths were used to collect the raw data from the MCT detector. Furthermore, three long-pass filters were used to remove the high-order diffraction peaks of the gratings. From 1.8 to 5.2 μm, the spectrum was recorded by a grating of 120 grooves/mm and 3750 Blaze (JASCO) (G1), and a 1.8 μm long-pass filter (F1). From 4.5 to 10 μm, the spectrum was recorded by a grating of 120 grooves/mm and 8300 Blaze (JASCO) (G2), and a 4.7 μm long-pass filter (F2). From 9 to 16 μm, the spectrum was recorded by a grating of 40 grooves/mm and 15000 Blaze (BUNKOUKEIKI) (G3), and a 9.4 μm long-pass filter (F3). The three raw spectra were stitched, and then calibrated by applying a calibration function.

The spliced MIR SC spectrum and the spectrum of the pump source are shown in Fig. 4. We can see that the SC spectrum covers from 2.0 to 15.1 μm, which is, to the best of our knowledge, the broadest MIR SC spectrum observed so far in optical fibers. It is of key importance for the development of optical devices operating in MIR and gives a great chance for fiber-based applications in sensing, medical, and biological imaging areas. For the 3 cm-long chalcogenide step-index fiber, the nonlinear length is LNL=1/γP0, where γ is the nonlinear coefficient and P0 is the peak power. From Fig. 2(d), we get γ=62.3km1W1 at the pump wavelength of 9.8μm. The dispersion length is LD=T02/|β2|, where T0TFWHM/1.763 is the pulse width for hyperbolic-secant shape and β2=369.6ps2/km at 9.8μm is the dispersion parameter calculated according to Fig. 1(b). For the coupling peak power of 2.89MW, LNL is 5.55×106m, and LD is 2.52×102m. Because the fiber length L=3cm>LNL and >LD, the spectrum broadening in the anomalous dispersion region was dominated by the fission of the higher-order solitons. Based on N2=γP0T02/|β2|, the order of solitons (N) in the fiber was 67. In the normal dispersion region, the spectrum broadening was dominated by the radiation of dispersive waves generated under the phase-matching condition. The recessions in the SC spectrum centering around 2.9 (1), 5.9 (2) and 10.6 μm (3) perhaps come from the absorption bands of atmospheric water and Se-O. After 11.7 μm, the spectrum declined abruptly (4), which was in accordance with the strong and wide absorption band of Se-H. Moreover, because the wavelength of the SC spectrum was comparable to the fiber core diameter, the output near-field beam profile was measured by a beam profiling camera (WinCamD, FIR2-16-HR) with the measurement range of 216μm. The image is shown in the inset of Fig. 4, which confirms that the light was confined in the fiber core.

 figure: Fig. 4.

Fig. 4. Measured MIR SC spectrum in the 3 cm-long chalcogenide step-index fiber at the pump wavelength of 9.8μm with the peak power of 2.89MW.

Download Full Size | PPT Slide | PDF

The SC generation in the chalcogenide step-index fiber was simulated by the generalized nonlinear Schrödinger equation (GNLSE) [2], as shown in Fig. 5. The total response function R(t) including the instantaneous electronic (δ(t)) and the delayed Raman response (hR(t)) is given by

R(t)=(1fr)δ(t)+frhR(t),
and the delayed Raman response
hR(t)=τ12+π22τ1τ22exp(tτ2)sin(tτ1).

 figure: Fig. 5.

Fig. 5. Simulation MIR SC generation at the pump wavelength of 9.8μm with the peak power of 2.89MW.

Download Full Size | PPT Slide | PDF

Table 1 lists the parameters used for the simulation: fiber length L, peak power P, pump wavelength λ, fiber loss α, nonlinear coefficient γ, pulse width TFWHM, etc. The fiber loss was replaced by the As2Se3 rod loss [Fig. 2(b)], and the nonlinear coefficient can be obtained from Fig. 2(d). However, there are still some differences, probably due to the following: the disparity between the fiber loss and the rod loss; the disparity between the calculated peak power in the simulation and the actual peak power in the experiment. Moreover, the deviation of the simulated dispersion profile in Fig. 1(b) would affect the shape and range of the simulated SC, and there is also the possibility of coupling to other polarizations or spatial modes in the fiber.

Tables Icon

Table 1. Parameters Used for Simulation MIR SC Generation in the Chalcogenide Step-index Fiber

In summary, MIR SC spectrum spanning 2.0 to 15.1 μm is successfully generated in a 3 cm-long chalcogenide step-index fiber. To the best of our knowledge, it is the broadest MIR SC generation observed so far in optical fibers. This study facilitates the development of optical devices operating at wavelengths in the MIR region, and improves the fiber-based applications in sensing, medical, and biological imaging areas.

Funding

Ministry of Education, Culture, Sports, Science, and Technology (MEXT) (2011-2015).

Acknowledgment

Tonglei Cheng acknowledges the support of the JSPS Postdoctoral Fellowship. The authors wish to thank J. A. Woollam Japan Company for measuring the refractive indices of As2Se3 and AsSe2 glasses.

REFERENCES

1. C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976). [CrossRef]  

2. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

3. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]  

4. T. A. Birks, W. J. Wadsworth, and P. J. Russell, Opt. Lett. 25, 1415 (2000). [CrossRef]  

5. M. G. Allen, Meas. Sci. Technol. 9, 545 (1998). [CrossRef]  

6. A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012). [CrossRef]  

7. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011). [CrossRef]  

8. J. Swiderski and M. Michalska, Opt. Lett. 39, 910 (2014). [CrossRef]  

9. M. S. Liao, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 29, 194 (2011). [CrossRef]  

10. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015). [CrossRef]  

11. T. L. Cheng, Y. Kanou, X. J. Xue, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Opt. Express 22, 13322 (2014). [CrossRef]  

12. W. Q. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, Opt. Express 21, 9573 (2013). [CrossRef]  

13. J. J. Pigeon, Y. S. Tochitsky, C. Gong, and C. Joshi, Opt. Lett. 39, 3246 (2014). [CrossRef]  

14. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009). [CrossRef]  

15. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161 (2008). [CrossRef]  

16. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

17. R. T. White and T. M. Monro, Opt. Lett. 36, 2351 (2011). [CrossRef]  

18. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, Opt. Express 18, 26647 (2010). [CrossRef]  

19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004). [CrossRef]  

20. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015). [CrossRef]  

21. T. S. Saini, A. Kumar, and R. K. Sinha, J. Lightwave Technol. 33, 3914 (2015). [CrossRef]  

22. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, Opt. Express 22, 3959 (2014). [CrossRef]  

23. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014). [CrossRef]  

24. W. Yuan, Laser Phys. Lett. 10, 095107 (2013). [CrossRef]  

25. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014). [CrossRef]  

26. T. L. Cheng, H. Kawashima, X. J. Xue, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 33, 333 (2015). [CrossRef]  

27. T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014). [CrossRef]  

28. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 25, 254 (2000). [CrossRef]  

29. A. Ben Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” in PIERS Proceedings, Marrakesh, Morocco, March 20–23, 2011, p. 1256.

References

  • View by:
  • |
  • |
  • |

  1. C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
    [Crossref]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  3. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  4. T. A. Birks, W. J. Wadsworth, and P. J. Russell, Opt. Lett. 25, 1415 (2000).
    [Crossref]
  5. M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
    [Crossref]
  6. A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012).
    [Crossref]
  7. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
    [Crossref]
  8. J. Swiderski and M. Michalska, Opt. Lett. 39, 910 (2014).
    [Crossref]
  9. M. S. Liao, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 29, 194 (2011).
    [Crossref]
  10. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
    [Crossref]
  11. T. L. Cheng, Y. Kanou, X. J. Xue, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Opt. Express 22, 13322 (2014).
    [Crossref]
  12. W. Q. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, Opt. Express 21, 9573 (2013).
    [Crossref]
  13. J. J. Pigeon, Y. S. Tochitsky, C. Gong, and C. Joshi, Opt. Lett. 39, 3246 (2014).
    [Crossref]
  14. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
    [Crossref]
  15. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161 (2008).
    [Crossref]
  16. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).
  17. R. T. White and T. M. Monro, Opt. Lett. 36, 2351 (2011).
    [Crossref]
  18. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, Opt. Express 18, 26647 (2010).
    [Crossref]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004).
    [Crossref]
  20. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
    [Crossref]
  21. T. S. Saini, A. Kumar, and R. K. Sinha, J. Lightwave Technol. 33, 3914 (2015).
    [Crossref]
  22. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, Opt. Express 22, 3959 (2014).
    [Crossref]
  23. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014).
    [Crossref]
  24. W. Yuan, Laser Phys. Lett. 10, 095107 (2013).
    [Crossref]
  25. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
    [Crossref]
  26. T. L. Cheng, H. Kawashima, X. J. Xue, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 33, 333 (2015).
    [Crossref]
  27. T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014).
    [Crossref]
  28. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 25, 254 (2000).
    [Crossref]
  29. A. Ben Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” in PIERS Proceedings, Marrakesh, Morocco, March20–23, 2011, p. 1256.

2015 (4)

2014 (7)

2013 (2)

2012 (1)

A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012).
[Crossref]

2011 (4)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
[Crossref]

M. S. Liao, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 29, 194 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

R. T. White and T. M. Monro, Opt. Lett. 36, 2351 (2011).
[Crossref]

2010 (1)

2009 (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

2004 (1)

2000 (2)

1998 (1)

M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
[Crossref]

1976 (1)

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Adam, J. L.

Aggarwal, I. D.

Agger, C. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Allen, M. G.

M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
[Crossref]

Asano, K.

T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014).
[Crossref]

Bang, O.

Ben Salem, A.

A. Ben Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” in PIERS Proceedings, Marrakesh, Morocco, March20–23, 2011, p. 1256.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, Opt. Express 22, 3959 (2014).
[Crossref]

Benson, T. M.

Birks, T. A.

Brilland, L.

Calvez, L.

Canat, G.

Chartier, T.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Cheng, T. L.

Cheong, S. W.

Cherif, R.

A. Ben Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” in PIERS Proceedings, Marrakesh, Morocco, March20–23, 2011, p. 1256.

Choi, D.

Cimalla, P.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Cordeiro, C. M. B.

Coulombier, Q.

Cronin-Golomb, M.

Deng, D.

Deng, D. H.

Domachuk, P.

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Duhant, M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

El Amraoui, M.

Farries, M.

Fuhrberg, P.

Furniss, D.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Gai, X.

Gao, W. Q.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

George, A. K.

Gong, C.

Guo, W.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012).
[Crossref]

Hodelin, J.

Hwang, H. Y.

Joshi, C.

Kanou, Y.

T. L. Cheng, Y. Kanou, X. J. Xue, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Opt. Express 22, 13322 (2014).
[Crossref]

T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014).
[Crossref]

T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014).
[Crossref]

Katsufuji, T.

Kawashima, H.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Knight, J. C.

Koch, E.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
[Crossref]

Kubat, I.

Kumar, A.

Lamrini, S.

Lenz, G.

Li, L.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Liao, M.

Liao, M. S.

T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014).
[Crossref]

M. S. Liao, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 29, 194 (2011).
[Crossref]

Lin, C.

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[Crossref]

Lines, M. E.

Luther-Davies, B.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Madden, S.

Matsumoto, M.

Mechin, D.

Méchin, D.

Messaddeq, Y.

Michalska, M.

Misumi, T.

Mittasch, M.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
[Crossref]

Møller, U.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Møller, U. V.

Monro, T. M.

Moselund, P. M.

Napier, B.

Ohishi, Y.

Omenetto, F. G.

Petersen, C. R.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, Opt. Express 22, 3959 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012).
[Crossref]

Pigeon, J. J.

Qi, S.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Qin, G. S.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Renard, W.

Renversez, G.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Russell, P. J.

Saini, T. S.

Sanghera, J.

Sanghera, J. S.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012).
[Crossref]

Scholle, K.

Seddon, A.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, Opt. Express 22, 3959 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Seddon, A. B.

Shaw, L. B.

Sinha, R. K.

Slusher, R. E.

Smektala, F.

Spälter, S.

Stolen, R. H.

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[Crossref]

Sujecki, S.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Suzuki, T.

Swiderski, J.

Tang, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Tang, Z.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Tao, G.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Tochitsky, Y. S.

Toupin, P.

Troles, J.

Wadsworth, W. J.

Walther, J.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
[Crossref]

Wang, A.

Wang, R.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Ward, J.

White, R. T.

Wolchover, N. A.

Xue, X. J.

Yan, X.

M. S. Liao, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 29, 194 (2011).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Yang, A.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Yang, Z.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

Yu, Y.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Yuan, W.

W. Yuan, Laser Phys. Lett. 10, 095107 (2013).
[Crossref]

Zghal, M.

A. Ben Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” in PIERS Proceedings, Marrakesh, Morocco, March20–23, 2011, p. 1256.

Zhai, C.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

Zhang, B.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, Opt. Lett. 40, 1081 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Zimmermann, J.

Appl. Phys. Lett. (3)

C. Lin and R. H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

T. L. Cheng, Y. Kanou, K. Asano, D. H. Deng, M. S. Liao, Y. Kanou, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 104, 121911 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, J. Am. Ceram. Soc. 98, 1389 (2015).
[Crossref]

J. Biomed. Opt. (1)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, J. Biomed. Opt. 16, 116020 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

W. Yuan, Laser Phys. Lett. 10, 095107 (2013).
[Crossref]

Meas. Sci. Technol. (1)

M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
[Crossref]

Nat. Photonics (3)

A. Schliesser, N. Picque, and T. W. Hansch, Nat. Photonics 6, 440 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photonics 8, 830 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. Ben Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” in PIERS Proceedings, Marrakesh, Morocco, March20–23, 2011, p. 1256.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Measured refractive indices of As2Se3 (core) and AsSe2 (cladding) as well as calculated NA. (b) Calculated dispersions for the fundamental mode of the chalcogenide step-index fiber with the core diameter changing from 11 to 17 μm. (c) Calculated confinement losses of the chalcogenide step-index fiber with the core diameter changing from 11 to 17 μm.
Fig. 2.
Fig. 2. (a) Photos of the AsSe2 tube, the As2Se3 rod, and the elongated As2Se3 rod. (b) Measured transmission spectrum of a 2-mm-thick As2Se3 sample and the As2Se3 rod loss. (c) Cross section of the chalcogenide step-index fiber taken by SEM. (d) Calculated effective mode areas and nonlinear coefficients of the fundamental mode.
Fig. 3.
Fig. 3. (a) Experimental setup for MIR SC generation in the 3 cm-long chalcogenide step-index fiber. LPF: long-pass filter; PM: parabolic mirror. (b) DFG average powers at different wavelengths.
Fig. 4.
Fig. 4. Measured MIR SC spectrum in the 3 cm-long chalcogenide step-index fiber at the pump wavelength of 9.8μm with the peak power of 2.89MW.
Fig. 5.
Fig. 5. Simulation MIR SC generation at the pump wavelength of 9.8μm with the peak power of 2.89MW.

Tables (1)

Tables Icon

Table 1. Parameters Used for Simulation MIR SC Generation in the Chalcogenide Step-index Fiber

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R(t)=(1fr)δ(t)+frhR(t),
hR(t)=τ12+π22τ1τ22exp(tτ2)sin(tτ1).

Metrics