Abstract

We investigate the orthogonality of orbital angular momentum (OAM) with other multiplexing domains and present a free-space data link that uniquely combines OAM-, polarization-, and wavelength-division multiplexing. Specifically, we demonstrate the multiplexing/demultiplexing of 1008 data channels carried on 12 OAM beams, 2 polarizations, and 42 wavelengths. Each channel is encoded with 100Gbit/s quadrature phase-shift keying data, providing an aggregate capacity of 100.8Tbit/s (12×2×42×100Gbit/s).

© 2014 Optical Society of America

While spin angular momentum relates to the polarization state of a light beam, orbital angular momentum (OAM) is a totally independent characteristic that is identified by the angular distribution of the wave phase front [1]. Generally, a laser beam with a helical phase front, i.e., containing a phase term of exp(iθ), carries an OAM value of on each of its photons, where is an unbounded integer indicating the topological charge, θ is the azimuthal angle, and is the reduced Plank’s constant [2]. Due to their unique properties, laser beams carrying OAM, i.e., vortex beams, have found applications in optical manipulations and quantum optics [3,4]. Recently, OAM beams were used as data carriers in an optical communication link, based on the fact that they form a complete and orthogonal basis [5,6]. Specifically, multiple independent data streams, each carried by a beam with the same wavelength and polarization but a different vortex charge, were spatially multiplexed at the transmitter and demultiplexed at the receiver, and the system capacity and spectral efficiency (SE) were dramatically improved [7]. Additional domains, such as wavelength and polarization, have been traditionally used to multiplex/demultiplex independent data channels [8]. The total transmission capacity would dramatically increase if all three domains could be used simultaneously in a single communication link, provided that they are mutually orthogonal.

While OAM-based communication links have been reported, these demonstrations have used two domains instead of three, including (1) OAM multiplexing and polarization-division multiplexing (PDM), in which 16 OAM beams and two polarizations are used to achieve a 2.56Tbit/s free-space link on a single wavelength [5]; and (2) OAM multiplexing and wavelength-division multiplexing (WDM), by which a 2Tbit/s data link via two OAM modes on 25 wavelengths was demonstrated in free space [9], and a 1.6Tbit/s transmission using two OAM modes on 10 wavelengths was reported in a vortex fiber [10].

Here we combine OAM multiplexing, PDM, and WDM simultaneously, and demonstrate the multiplexing/demultiplexing of 1008 data channels (each carrying 100Gbit/s QPSK signal) in a free-space optical data link [11]. We utilize 12 OAM beams, each with 2 polarizations and each containing 42 WDM channels, providing an aggregate capacity of 100.8Tbit/s (12×2×42×100Gbit/s) and an SE of 22.3bit/s/Hz. We note that the aggregate capacity, SE, and transmission distance of this free-space result are lower than those reported for fiber-based space-division-multiplexing (SDM) experiments, which have used non-OAM mode multiplexing in few-mode fibers and space multiplexing in multicore fibers [1216].

The concept of a data link using three-dimensional multiplexing is presented in Fig. 1. As an example, OAM beams with one polarization and the same wavelength (λ1), but carrying different data channels (data 1, 2, 3 on OAM beams with =1, 2, and 3, respectively), can be spatially multiplexed/demultiplexed in one beam, as shown in Fig. 1(a). In addition, the same set of OAM beams on the orthogonal polarization can be used to carry another set of data (data 4–6). These two sets are then polarization multiplexed, as shown in Fig. 1(b). Furthermore, using two more wavelengths (λ2 and λ3), the same set of polarization- and OAM-multiplexed beams can be used to transport more independent data streams (data 7–12 on λ2, data 13–18 on λ3), as shown in Fig. 1(c).

 

Fig. 1. Concept of using three-dimensional multiplexing to increase the multiplexed data channels. (a), (b), and (c) are performed successively to achieve OAM, PDM, and WDM, respectively.

Download Full Size | PPT Slide | PDF

The experimental setup is shown in Fig. 2. A WDM transmitter was built, comprising 100 GHz spaced 42 wavelengths (1536.34–1568.5 nm), each modulated with 100Gbit/s QPSK data. In order to decorrelate the data of neighboring WDM channels, even and odd channels are separated by a 100/200GHz optical interleaver, one branch of which is relatively delayed by 250 symbols (5ns) and is then recombined with the other branch again using a 3-dB coupler.

 

Fig. 2. Experimental setup. (1) Generation and multiplexing of six OAM beams. (2) Generation and multiplexing of another six OAM beams with opposite vortex charges (3) Pol-MUX. PC, polarization controller; BPF, bandpass filter; Pol., polarizer; OC, optical coupler; Col., collimator; MR, mirror; HWP, half-wave plate; SLM, spatial light modulator; BS, beam splitter; PBS, polarization beam splitter; AWG, array waveguide grating; EDFA, erbium-doped fiber amplifier.

Download Full Size | PPT Slide | PDF

The wavelength-multiplexed data channels from the WDM transmitter are split into two copies, whose data streams are decorrelated by the insertion of a 100 m single-mode fiber in the lower branch. Each copy of light is sent to a collimator that generates a collimated Gaussian beam in free space, and is then sent to a reflective spatial light modulator (SLM). The SLM used here is a liquid-crystal-based reflective phase modulator with a spatial resolution of 20 μm. Since the SLM is polarization dependent, a polarization controller (PC) and a free-space polarizer are used to optimize the polarization of the input light. Procedures for creating 12 OAM beams, each with two polarizations, are presented in Figs. 2(a1)–2(a3). First, we use a specially designed phase pattern to convert a Gaussian beam to a superposition of three OAM beams with equally spaced charges [17]. Specifically, SLM1 generates OAM with =+4, +10, and +16, while SLM2 generates OAM beams with =+7, +13, and +19. We choose the OAM values with an interval of 3 instead of 1 in order to reduce the crosstalk between neighboring channels, which is generally higher for closer spacings. These two outputs are multiplexed together using a beam splitter (BS), thereby creating the multiplexing of six OAM beams including =+4, +7, +10, +13, +16, and +19. Second, the multiplexed six OAM beams are split into two copies. One copy is reflected five times (three times by the mirrors and twice by the two BSs) to create another six OAM beams with inverse charges, and delayed by 60 symbols, again for data decorrelation. These two copies are then combined again to achieve 12 multiplexed OAM beams with =±4, ±7, ±10, ±13, ±16, and ±19. Third, these 12 OAM beams are split again via a BS. One of them is polarization-rotated by 90 deg and delayed by 33 symbols, and then recombined with the other copy, using a polarization beam splitter (PBS), finally creating the multiplexing of 24 OAM beams (with =±4, ±7, ±10, ±13, ±16, and ±19 on two polarizations). The recorded images of multiplexed OAM beams in each step are shown in Fig. 3. Each of the intensity profiles of the multiplexed OAM beams in Fig. 3 each has a sixfold rotational symmetric shape, rather than a ring shape, which is because each of them contains three OAM beams with a charge interval of 6, as shown in Figs. 3(a3) and 3(b3). The data carried by different OAM beams are mutually uncorrelated except for those originating from the same SLM, e.g., OAM beams with =+4, +10, and +16, or with =+7, +13, and +19.

 

Fig. 3. Designed holograms and images of multiplexed OAM beams. (a1) Gaussian beam. (a2) Phase hologram for generating three OAM beams (=+4, +10, and +16). (a3) Generated OAM beam including =+4, +10, and +16. (b1) Gaussian beam. (b2) Phase hologram for generating three OAM beams (=+7, +13, and +19). (b3) Generated OAM beams (=+7, +13, and +19). (c) Multiplexed OAM beams with =+4, +7, +10, +13, +16, and +19. (d) Multiplexed OAM beams with =±4, ±7, ±10, ±13, ±16, and ±19. (e) Polarization-multiplexed OAM beams including =±4, ±7, ±10, ±13, ±16, and ±19 on both x and y polarization.

Download Full Size | PPT Slide | PDF

After propagating 1m in free space, polarization demultiplexing is conducted first, followed by OAM and wavelength demultiplexing. Polarization demultiplexing is achieved using a polarizer, which selects either x or y polarization and blocks the other one. A half-wave plate (HWP) is inserted after the polarizer to optimize the polarization of the incoming light for the third SLM, which is loaded with a spiral phase pattern inverse to the OAM beam to be demultiplexed. As a result, the OAM beam to be demultiplexed is converted to a Gaussian beam, while all other beams remain in an OAM state with a nonzero charge. Only the converted Gaussian beam can be efficiently coupled into a single-mode fiber, which functions as a mode filter. A tunable bandpass filter is used to select a wavelength from the WDM signal. Each channel is demultiplexed by adjusting the polarizer, the programmable phase pattern and the tunable filter. For bit-error-rate (BER) measurements, the distributed feedback laser source for the examined channel was replaced by a tunable external cavity laser, compatible with the requirements of coherent detection. The demultiplexed channel is sent to a digital coherent receiver with offline digital signal processing. A real-time scope is used for analog-to-digital conversion and data recording. Recorded waveforms are resampled, followed by fast Fourier transform-based frequency offset estimation and carrier phase recovery using previously reported algorithms [18,19]. Channel equalization is bypassed due to negligible channel degradation in free space.

We first characterize the crosstalk of the OAM multiplexing/demultiplexing system on a single wavelength. Here, crosstalk is defined as the ratio of the power received only from the demultiplexed channel (measured when all other beams are blocked) to the power received from all other channels except the demultiplexed channel (measured when only this beam is blocked). The measured power distributions are tabulated in Fig. 4. The measured crosstalk varies between 15.9 and 25.2dB. We note that the crosstalk measurement in Fig. 4 cannot reflect crosstalk among the three OAM beams that originate from the same Gaussian beam, such as OAM beams with =+4, +10, and +16, or =+7, +13, and +19. This type of crosstalk is characterized separately by sending only one of the three OAM beams through the system and then measuring the power that leaks to the other two. This measurement shows that crosstalk among each of the three OAM beams is <32dB, which is expected to have a negligible effect on the performance of the 100Gbit/s QPSK link.

 

Fig. 4. Crosstalk measurement for all the OAM beams at a single wavelength (1552.26 nm).

Download Full Size | PPT Slide | PDF

Figure 5 shows the measured optical spectra of the received signal when demultiplexing =+10 beam in x polarization from (1) OAM beams with =+6, +10, and +16 and (2) all other beams. Therefore, the difference between these two curves also reflects crosstalk for the =+10 beam at each wavelength. The measurement indicates that the crosstalk has a negligible dependence on wavelength within the measured range.

 

Fig. 5. Measured optical spectra of a single beam (=+10 in x polarization). Blue solid: demultiplexing =+10 when sending OAM beams with =+4, +10, and +16. Red dot: demultiplexing =+10 when sending all other modes except =+4, +10, and +16.

Download Full Size | PPT Slide | PDF

Figure 6 plots the measured BER as a function of optical signal-to-noise ratio (OSNR) for a demultiplexed channel with the largest crosstalk. The BER is measured when (1) all channels are on (i.e., including all crosstalk), (2) only one group of OAM beams (three from the same SLM) is on (i.e., without OAM crosstalk), (3) only one group of OAM beams is on while the neighboring wavelength channels are off (i.e., without OAM crosstalk, without WDM crosstalk), and (4): back to back. At a BER of 3.8×103, the results show that WDM crosstalk produces a power penalty of 0.3dB and crosstalk from other OAM modes produces an additional penalty of 1.7dB. We believe that the power penalty due to OAM crosstalk can be partially attributed to the nonideal OAM generation at the transmitter, for which the SLM has a limited light utilization efficiency. The crosstalk could therefore potentially be reduced by using a higher-efficiency SLM. We then adjust the OAM demultiplexer, the polarizer, and the filter to demultiplex each of 1008 channels and measure the BER and OSNR, as plotted in Fig. 7. With the presence of all the crosstalk, each individual channel achieves a BER below 3.8×103.

 

Fig. 6. BER as a function of OSNR for the demultiplexed channel with the worst crosstalk.

Download Full Size | PPT Slide | PDF

 

Fig. 7. Measured BER and OSNR for all 1008 channels (504 channels in x-pol and 504 channels in y-pol.).

Download Full Size | PPT Slide | PDF

In this proof-of-concept demonstration, we use bulk SLMs and BSs for OAM generation and multiplexing. However, these devices could potentially be replaced by novel integrated devices (e.g., [20,21]), which could be more compact and practical for future systems. In order to enable more efficient polarization demultiplexing at the receiver without the use of a polarization rotator, one could potentially use a polarization-independent mode sorter [22] followed by coupling into an optical fiber and a polarization-diversity coherent receiver. In addition, if an array waveguide grating is used instead of the tunable filter, each channel can be demultiplexed simultaneously without dropping the power of other channels. The results for this paper are for a 1 m free-space link on an optical bench. For longer distances, limitations include the following: (a) atmospheric turbulence could cause system degradation and require adaptive optics compensation techniques [23], and (b) the beam divergence for higher-order OAM beams would require a larger receiver aperture [24].

This work is supported by DARPA under the Inpho program.

References

1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992). [CrossRef]  

2. S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008). [CrossRef]  

3. M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011). [CrossRef]  

4. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001). [CrossRef]  

5. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. F. Arnold, Opt. Express 12, 5448 (2004). [CrossRef]  

6. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012). [CrossRef]  

7. A. Willner, J. Wang, and H. Huang, Science 337, 655 (2012). [CrossRef]  

8. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012). [CrossRef]  

9. I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012). [CrossRef]  

10. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013). [CrossRef]  

11. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

12. D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

13. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

14. D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013). [CrossRef]  

15. V. Sleiffer, Y. Jung, V. Veljanovski, R. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner Nielsen, Y. Sun, D. Richardson, S. Alam, F. Poletti, J. Sahu, A. Dhar, A. Koonen, B. Corbett, R. Winfield, A. Ellis, and H. de Waardt, Opt. Express 20, B428 (2012). [CrossRef]  

16. E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

17. B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008). [CrossRef]  

18. M. Kuschnerov, F. Hauske, K. Piyawanno, B. Spinnler, M. Alfiad, A. Napoli, and B. Lankl, J. Lightwave Technol. 27, 3614 (2009). [CrossRef]  

19. S. Savory, J. Sel. Top. Quantum Electron. 16, 1164 (2010).

20. X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012). [CrossRef]  

21. K. Fontaine, C. R. Doerr, and L. Buhl, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.2.

22. M. Lavery, D. J. Robertson, G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, Opt. Express 20, 2110 (2012). [CrossRef]  

23. B. Rodenburg, M. Lavery, M. Malik, M. O’Sullivan, M. Mirhosseini, D. Robertson, M. Padgett, and R. Boyd, Opt. Lett. 37, 3735 (2012). [CrossRef]  

24. J. Shapiro, S. Guha, and B. Erkmen, J. Opt. Netw. 4, 501 (2005). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [Crossref]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008).
    [Crossref]
  3. M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
    [Crossref]
  4. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
    [Crossref]
  5. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. F. Arnold, Opt. Express 12, 5448 (2004).
    [Crossref]
  6. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
    [Crossref]
  7. A. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).
    [Crossref]
  8. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
    [Crossref]
  9. I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
    [Crossref]
  10. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
    [Crossref]
  11. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.
  12. D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.
  13. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.
  14. D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
    [Crossref]
  15. V. Sleiffer, Y. Jung, V. Veljanovski, R. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner Nielsen, Y. Sun, D. Richardson, S. Alam, F. Poletti, J. Sahu, A. Dhar, A. Koonen, B. Corbett, R. Winfield, A. Ellis, and H. de Waardt, Opt. Express 20, B428 (2012).
    [Crossref]
  16. E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.
  17. B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
    [Crossref]
  18. M. Kuschnerov, F. Hauske, K. Piyawanno, B. Spinnler, M. Alfiad, A. Napoli, and B. Lankl, J. Lightwave Technol. 27, 3614 (2009).
    [Crossref]
  19. S. Savory, J. Sel. Top. Quantum Electron. 16, 1164 (2010).
  20. X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
    [Crossref]
  21. K. Fontaine, C. R. Doerr, and L. Buhl, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.2.
  22. M. Lavery, D. J. Robertson, G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, Opt. Express 20, 2110 (2012).
    [Crossref]
  23. B. Rodenburg, M. Lavery, M. Malik, M. O’Sullivan, M. Mirhosseini, D. Robertson, M. Padgett, and R. Boyd, Opt. Lett. 37, 3735 (2012).
    [Crossref]
  24. J. Shapiro, S. Guha, and B. Erkmen, J. Opt. Netw. 4, 501 (2005).
    [Crossref]

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

2012 (8)

2011 (1)

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[Crossref]

2010 (1)

S. Savory, J. Sel. Top. Quantum Electron. 16, 1164 (2010).

2009 (1)

2008 (2)

S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008).
[Crossref]

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[Crossref]

2005 (1)

2004 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Alam, S.

Alfiad, M.

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[Crossref]

Arnold, S. F.

Barnett, S. M.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[Crossref]

Berkhout, G.

Birnbaum, K.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Bowman, R.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[Crossref]

Boyd, R.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

Buhl, L.

K. Fontaine, C. R. Doerr, and L. Buhl, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.2.

Burrows, E.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Cai, X.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Chandrasekhar, S.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Chen, H.

Cheng, X.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Collier, A.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Corbett, B.

Courtial, J.

de Waardt, H.

Delbue, R.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Dhar, A.

Doerr, C. R.

K. Fontaine, C. R. Doerr, and L. Buhl, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.2.

Dogariu, A.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Ellis, A.

Erkmen, B.

J. Shapiro, S. Guha, and B. Erkmen, J. Opt. Netw. 4, 501 (2005).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Essiambre, R.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Fazal, I.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Fontaine, K.

K. Fontaine, C. R. Doerr, and L. Buhl, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.2.

Fontaine, N. K.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Franke-Arnold, S.

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[Crossref]

S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008).
[Crossref]

Geng, Y.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Gibson, G.

Gnauck, A. H.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Grüner Nielsen, L.

Gruner-Nielsen, L.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Guha, S.

Hauske, F.

Hu, J.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

A. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Huang, M.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Huang, Y.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Inan, B.

Ip, E.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Jack, B.

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[Crossref]

Jensen, R. V.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Ji, P.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Jung, Y.

Koonen, A.

Koreshkov, K.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

Kuschnerov, M.

Lankl, B.

Lavery, M.

B. Rodenburg, M. Lavery, M. Malik, M. O’Sullivan, M. Mirhosseini, D. Robertson, M. Padgett, and R. Boyd, Opt. Lett. 37, 3735 (2012).
[Crossref]

M. Lavery, D. J. Robertson, G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, Opt. Express 20, 2110 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Li, M.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Linares, J.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Lingle, R.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Love, G. D.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[Crossref]

Malik, M.

Mateo, E.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Mirhosseini, M.

Montero, C.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Montoliu, M.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Moreno, V.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Morris, B. J.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Napoli, A.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

O’Brien, J. L.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

O’Sullivan, M.

Padgett, M.

B. Rodenburg, M. Lavery, M. Malik, M. O’Sullivan, M. Mirhosseini, D. Robertson, M. Padgett, and R. Boyd, Opt. Lett. 37, 3735 (2012).
[Crossref]

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[Crossref]

S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. F. Arnold, Opt. Express 12, 5448 (2004).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Padgett, M. J.

Pas’ko, V.

Piyawanno, K.

Poletti, F.

Prieto, X.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Pupalaikis, P.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Qian, D.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

Randel, S.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Richardson, D.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

Robertson, D.

Robertson, D. J.

Rodenburg, B.

Rogawski, D.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Ryf, R.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Sahu, J.

Savory, S.

S. Savory, J. Sel. Top. Quantum Electron. 16, 1164 (2010).

Shamee, B.

Shao, Y.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Shapiro, J.

Sleiffer, V.

Sorel, M.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Spinnler, B.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[Crossref]

Strain, M.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Sun, Y.

V. Sleiffer, Y. Jung, V. Veljanovski, R. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner Nielsen, Y. Sun, D. Richardson, S. Alam, F. Poletti, J. Sahu, A. Dhar, A. Koonen, B. Corbett, R. Winfield, A. Ellis, and H. de Waardt, Opt. Express 20, B428 (2012).
[Crossref]

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Sureka, A.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Tanaka, A.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Thompson, M. G.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Tian, Y.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

van Uden, R.

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[Crossref]

Veljanovski, V.

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

A. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).
[Crossref]

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Wang, T.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).
[Crossref]

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[Crossref]

Willner, A.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

A. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Willner, A. E.

Winfield, R.

Winzer, P.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[Crossref]

Wood, W.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Xie, C.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Xie, G.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Yan, Y.

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

Yang, J.-Y.

Yano, Y.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

Yu, S.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

I. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[Crossref]

Zhang, S.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Zhang, Y.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

Zhu, J.

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

J. Sel. Top. Quantum Electron. (1)

S. Savory, J. Sel. Top. Quantum Electron. 16, 1164 (2010).

Laser Photonics Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photonics Rev. 2, 299 (2008).
[Crossref]

Nat. Photonics (3)

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photonics 7, 354 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photonics 6, 488 (2012).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[Crossref]

New J. Phys. (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[Crossref]

Science (3)

A. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. Willner, and S. Ramachandran, Science 340, 1545 (2013).
[Crossref]

X. Cai, J. Wang, M. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
[Crossref]

Other (5)

K. Fontaine, C. R. Doerr, and L. Buhl, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.2.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.2.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. Tur, B. Erkmen, K. Birnbaum, S. Dolinar, M. Lavery, M. Padgett, and A. Willner, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2013) (Optical Society of America, 2013), paper OTh4G.5.

D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.3.

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner-Nielsen, R. V. Jensen, and R. Lingle, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Concept of using three-dimensional multiplexing to increase the multiplexed data channels. (a), (b), and (c) are performed successively to achieve OAM, PDM, and WDM, respectively.

Fig. 2.
Fig. 2.

Experimental setup. (1) Generation and multiplexing of six OAM beams. (2) Generation and multiplexing of another six OAM beams with opposite vortex charges (3) Pol-MUX. PC, polarization controller; BPF, bandpass filter; Pol., polarizer; OC, optical coupler; Col., collimator; MR, mirror; HWP, half-wave plate; SLM, spatial light modulator; BS, beam splitter; PBS, polarization beam splitter; AWG, array waveguide grating; EDFA, erbium-doped fiber amplifier.

Fig. 3.
Fig. 3.

Designed holograms and images of multiplexed OAM beams. (a1) Gaussian beam. (a2) Phase hologram for generating three OAM beams (=+4, +10, and +16). (a3) Generated OAM beam including =+4, +10, and +16. (b1) Gaussian beam. (b2) Phase hologram for generating three OAM beams (=+7, +13, and +19). (b3) Generated OAM beams (=+7, +13, and +19). (c) Multiplexed OAM beams with =+4, +7, +10, +13, +16, and +19. (d) Multiplexed OAM beams with =±4, ±7, ±10, ±13, ±16, and ±19. (e) Polarization-multiplexed OAM beams including =±4, ±7, ±10, ±13, ±16, and ±19 on both x and y polarization.

Fig. 4.
Fig. 4.

Crosstalk measurement for all the OAM beams at a single wavelength (1552.26 nm).

Fig. 5.
Fig. 5.

Measured optical spectra of a single beam (=+10 in x polarization). Blue solid: demultiplexing =+10 when sending OAM beams with =+4, +10, and +16. Red dot: demultiplexing =+10 when sending all other modes except =+4, +10, and +16.

Fig. 6.
Fig. 6.

BER as a function of OSNR for the demultiplexed channel with the worst crosstalk.

Fig. 7.
Fig. 7.

Measured BER and OSNR for all 1008 channels (504 channels in x-pol and 504 channels in y-pol.).

Metrics