Abstract

We present a method to analyze the coupling of lateral displacements in nanoscale structures, in particular waveguide grating mirrors (WGMs), into the phase of a reflected Gaussian beam using a finite-difference time-domain simulation. Such phase noise is of interest for using WGMs in high-precision interferometry. We show that, to the precision of our simulations (107rad), waveguide mirrors do not couple lateral displacement into phase noise of a reflected beam and that WGMs are therefore not subject to the same stringent alignment requirements as previously proposed layouts using diffraction gratings.

© 2013 Optical Society of America

The sensitivity of high-precision interferometry experiments, such as the preparation of entangled test masses [1], frequency stabilization with rigid cavities [2], and gravitational wave detectors [3], are eventually limited by the quantum noise of the interrogating light or the thermal noise of the optical components. Quantum shot noise of the detected light can typically be reduced by increasing the laser power. However, this induces larger thermal distortions in the high-reflectivity (HR) coatings and substrates. A number of new techniques have been suggested to reduce the distortions from high power beams as well as thermal noise: the use of nonfundamental beam shapes [4], all-reflective interferometer layouts using dielectric gratings to reduce absorption of the laser in optics [5], and the use of waveguide grating mirrors (WGMs) [6]. WGMs would replace HR mirror coatings, reducing their thickness by a factor of 10–100, which promises to reduce the Brownian coating thermal noise [3,7]. However, gratings couple lateral displacements into the phase of diffraction orders |m|>0 [8,9]. This places stringent requirements on the alignment and stability of gratings and the incident laser beams for high-precision interferometry [10]. WGMs rely on diffraction into the first-order and could potentially be subject to the same displacement phase noise effects. However, so far no theoretical or experimental evidence has been presented to demonstrate whether WGMs suffer from this.

In this Letter, we apply a rigorous finite-difference time-domain (FDTD) based simulation with Gaussian beams to show that WGMs do not couple lateral displacements into the phase of a reflected laser beam. We further provide a simplified ray picture to illustrate this result.

Ray pictures have already been used to describe several WGM features [11], as depicted in Fig. 1. WGMs in their most simplistic form consist of two layers: (i) a waveguide layer applied to some substrate material, and (ii) a grating layer that couples the incident laser light into the waveguide layer (typically etched into the waveguide layer). In this case both the waveguide and grating layers are made from a high refractive index nh material with the substrate material’s lower refractive index denoted by nl. The geometrical grating parameters must be carefully chosen to reach a theoretical maximum reflectivity [6,7]. For given materials and laser light wavelength, the grating period d is chosen such that the normally incident beam is diffracted into the first-order within the waveguide layer at an angle that allows total internal reflection (TIR) at the waveguide-substrate boundary to occur. TIR at the substrate boundary along with the grating create a waveguide in which the ±1st orders propagate. These undergo diffraction at the grating multiple times, coupling out into the vacuum where it interferes with the reflected specular laser light. The remaining grating parameters, namely the thickness of the waveguide layer s, fill factor f, and groove depth g can all be tuned to provide destructive interference in the substrate and constructive in the vacuum, ideally providing 100% reflectivity.

 

Fig. 1. Incident beam (black) is coupled into the waveguide layer by the grating into m=±1. Orders ±1T propagate along the waveguide coupling back into the vacuum (blue) to interfere with the initially reflected light, 0R, picking up ΔΦm phase terms with each interaction with the grating. Further coupling into the vacuum is also possible (magenta), which involved further ΔΦm terms. The “*” superscript refers to the number of diffractions the beam has undergone. R=Reflection fromgrating, T=Transmission from grating, first number is order of diffraction m.

Download Full Size | PPT Slide | PDF

A lateral displacement δx of some grating structure versus the incident beam induces a phase shift of

ΔΦm=2πmδx/d,
relative to a nondisplaced beam for diffraction order m [10]. For WGMs we require that any rays coupling out into the vacuum do not have any phase terms dependent on δx. From Fig. 1 each time a ray is diffracted and picks up a ΔΦm term, an * is added as a superscript. The ray 1T** diffracted into the vacuum has collected two ΔΦm terms, its total phase is then Φ1T**=Φo(s,d,g,f,nl,nh)+ΔΦ+1+ΔΦ1, where Φo is a collection of all phase terms depending on the WGM parameters, but not δx. Φo is tuned with simulations by adjusting each parameter to produce 100% reflectivity. From Eq. (1) we see the ΔΦ1 and ΔΦ+1 terms cancel, with a similar argument being valid for all other rays that couple out into the vacuum, such as +1T***. Thus, following this strongly simplified picture any of the phase noise effects outlined in [10] for gratings should not apply to WGMs under normal incidence.

In order to provide a rigorous and physically correct computer model of a finite beam reflected from a WGM we have implemented a numerical FDTD-based algorithm, which provides the ability to model a variety of grating structures as well as arbitrary and finite incident electromagnetic field distributions. The simulation tool is coded in Java, open sourced (http://kvasir.sr.bham.ac.uk/redmine/projects/fdtd), and was based on [12]. A two-dimensional (2D) FDTD simulation sufficed for our needs as only a displacement of the WGM in one direction orthogonal to a normally incident Hermite–Gaussian (HG) beam was required, thus speeding up computation time significantly. Two extra features were also required for the simulation [12]: total-field scattered field (TFSF) for separating the incident and reflected beam from the WGM and complex perfectly matched layers (CPML) to reduce reflections from the simulation boundaries. The simulation package was validated by reproducing known dependencies (found in [6]) of the reflectivity as a function of the grating parameters and by investigating the phase noise of standard diffraction gratings [9].

The aim of the simulation was to measure the wavefront of an HG beam reflected from a WGM while displacing it from δx=0d. Along the wavefront the phase can then be deduced and plotted against δx to view any apparent phase shifts. The simulation setup is depicted in Fig. 2, where an HG TEM00 is injected in the y^ direction along the TFSF boundary and the electric field of the reflected beam is measured along the measurement line 15 μm away to avoid near-field variations. The Courant stability factor [12] for the simulation was chosen as S=cΔt/Δx=1/2, where Δt is the simulation time step and Δx=Δy=25nm are the size of the 2D discretization of the simulation space with dimensions Ly=250Δy and Lx=4000Δx. The injected beam’s wavelength was λ=1064nm and was positioned such that the waist was at the WGM with size w0=800Δx=20μm. The chosen WGM parameters were d=28Δx=700nm, g=14Δx=350nm, f=0.5, and s=5Δx=125nm, which provided a reflectivity of 99.8% for the incident beam (in agreement with [6]). The indices of refraction used were fused silica for nl=1.45 and Ta2O5 for nh=2.084, which are the typical materials used for 1064 nm optics.

 

Fig. 2. Schematic layout of 2D FDTD simulation for testing WGM shift invariance. Gaussian beam injected along TFSF boundary onto WGM (red). The reflected beam (green) then propagates to the measurement line where the phase is measured. The CPML absorbs outgoing waves to reduce reflections from boundaries.

Download Full Size | PPT Slide | PDF

Equation (1) states the phase shift for m=±1 is periodic with displacements of the grating period d=28Δx. Thus, for this effect to be visible the simulation was run 28 times for offsets δx=pΔx with p=0,1,2,,28. Approximately 3000 time steps were required for the reflected beam to reach an approximate steady state in each simulation. At this point 1024 time samples of the electric field at each point along the measurement line were taken, Ep(x,t). The generalized Goertzel algorithm [based on fast Fourier transforms (FFTs)] [13] was used to extract the amplitude Ap(x) and phase ϕp(x) of the reflected beam along the measurement line for the incident laser frequency f0=c/1064nm. ϕp(x) was obtained for each offset δx=pΔx of the WGM with the change in phase with displacement defined as Δϕp(x)=ϕp(x)ϕ0(x). Our model showed that displacement phase shift for WGMs are at least 105 smaller than for an equivalent grating setup, see Fig. 3. The central plot shows the phase change as a function of the displacement along the beam profile; the satellite plots provide the scale for the central plot. The top plot shows Δϕ14 increasing slightly toward the edge of the beam. This is expected to occur when Ap(x)0, which degrades any accurate calculation of the phase as the signal-to-numerical noise ratio decreases. At the beam peak, shown in the right plot, the phase change is Δϕp(x=0)20μrad and shows no correlation with δx. This result is five-orders of magnitude smaller than what Eq. (1) states for displaced grating structures. To determine whether the oscillations seen in Δϕp(x) were near-field effects or numerical artefacts the value max{Δϕp(x)} was computed at increasing distances from the WGM for a displacement over one grating period p=028 at the center of the beam (x=d/2d/2). As seen in Fig. 4, the near-field phase shifts from the initial imprint of the grating can be seen at y<3μm, which decays rapidly with distance, after which a flat noise is present. Figure 4 shows three different FFT windowing functions agreeing at y<3μm but possessing different noise floors, the lowest being max{Δϕp(x)}107rad using a Blackman FFT window. Numerical errors present from the FDTD are not thought to be limiting, increased spatial and temporal resolution (ΔxΔx/2) does not offer any improvement in the noise levels, as seen in Fig. 4. This suggests spectral leakage from the FFT is limiting the accuracy of phase measurements and the oscillations present in Δϕp(x) measured at 15 μm are purely numerical artefacts. Similar results were seen at varying distances from the WGM.

 

Fig. 3. Central plot shows phase change in the reflected beams wavefront Δϕp(x) against WGM displacement, δx. Top plot shows cross section of phase at δx=350nm, where the phase change is maximum. The right plot shows the variation in the phase of at x=0 against δx. Bottom plot shows the intensity of the reflected beam along x.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Maximum change in phase at beam peak intensity as the WGM is displaced from δx=0d with increasing distance from the WGM surface and different FFT windowing functions. Large near-field phase shifts are seen close to the WGM and then a flat noise. Increasing the spatial and temporal resolution of FDTD ΔxΔx/2 did not appear to offer reductions in numerical noise caused by FDTD.

Download Full Size | PPT Slide | PDF

This work presents the successful implementation of an FDTD simulation to analyze displacement-induced phase shifts in a reflected Gaussian beam from a WGM. No such phase shifts were found within the precision limit of 107rad set by numerical errors. This lower limit is seven-orders of magnitude lower than the phase noise estimated for previously proposed layouts with diffraction gratings, which raised concerns regarding the stability and alignment [10] of such configurations. Therefore, the absence of this phase shift for WGMs strengthens the argument for their usage in future high-precision interferometry experiments.

We acknowledge the Science and Technology Facilities Council (SFTC) for financial support in the UK. D. Friedrich was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre TR7. This document has been assigned the LIGO Laboratory Document number LIGO-P1300019.

References

1. H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008). [CrossRef]  

2. K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004). [CrossRef]  

3. G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002). [CrossRef]  

4. S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009). [CrossRef]  

5. K.-X. Sun and R. L. Byer, Opt. Lett. 23, 567 (1998). [CrossRef]  

6. A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006). [CrossRef]  

7. F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008). [CrossRef]  

8. S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005). [CrossRef]  

9. D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).

10. A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007). [CrossRef]  

11. A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997). [CrossRef]  

12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

13. P. Sysel and P. Rajmic, EURASIP J. Adv. Signal Process. 2012, 1 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
    [Crossref]
  2. K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
    [Crossref]
  3. G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
    [Crossref]
  4. S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009).
    [Crossref]
  5. K.-X. Sun and R. L. Byer, Opt. Lett. 23, 567 (1998).
    [Crossref]
  6. A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
    [Crossref]
  7. F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
    [Crossref]
  8. S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
    [Crossref]
  9. D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).
  10. A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
    [Crossref]
  11. A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
    [Crossref]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  13. P. Sysel and P. Rajmic, EURASIP J. Adv. Signal Process. 2012, 1 (2012).
    [Crossref]

2012 (1)

P. Sysel and P. Rajmic, EURASIP J. Adv. Signal Process. 2012, 1 (2012).
[Crossref]

2009 (1)

S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009).
[Crossref]

2008 (2)

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

2007 (1)

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[Crossref]

2006 (1)

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

2005 (1)

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

2004 (1)

K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

2002 (1)

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

1998 (1)

1997 (1)

Brown, D.

D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).

Brückner, F.

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).

Bunkowski, A.

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

Burmeister, O.

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

Byer, R. L.

Cagnoli, G.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Camp, J.

K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Chelkowski, S.

S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009).
[Crossref]

Chen, Y.

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Clausnitzer, T.

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Crooks, D. R. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Danzmann, K.

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

Deshpande, A. J.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Fejer, M. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Freise, A.

S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009).
[Crossref]

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[Crossref]

D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).

Friedrich, D.

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

Friesem, A. A.

Gretarsson, A. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Harry, G. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Hild, S.

S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009).
[Crossref]

Hough, J.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Kemery, A.

K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Kittelberger, S. E.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Kley, E.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Kley, E.-B.

Lodhia, D.

D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).

Mueller, G.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Müller-Ebhardt, H.

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

Nakagawa, N.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Numata, K.

K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Penn, S. D.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Quetschke, V.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Rajmic, P.

P. Sysel and P. Rajmic, EURASIP J. Adv. Signal Process. 2012, 1 (2012).
[Crossref]

Rehbein, H.

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

Reitze, D. H.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Rosenblatt, D.

Rowan, S.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Saulson, P. R.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Schnabel, R.

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

Sharon, A.

Startin, W. J.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

Sun, K.-X.

Sysel, P.

P. Sysel and P. Rajmic, EURASIP J. Adv. Signal Process. 2012, 1 (2012).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tanner, D. B.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Tünnermann, A.

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, Opt. Lett. 33, 264 (2008).
[Crossref]

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Whiting, B. F.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Wise, S.

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Classical Quantum Gravity (2)

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, Classical Quantum Gravity 19, 897 (2002).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, Classical Quantum Gravity 23, 7297 (2006).
[Crossref]

EURASIP J. Adv. Signal Process. (1)

P. Sysel and P. Rajmic, EURASIP J. Adv. Signal Process. 2012, 1 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

New J. Phys. (1)

A. Freise, A. Bunkowski, and R. Schnabel, New J. Phys. 9, 433 (2007).
[Crossref]

Opt. Lett. (2)

Phys. Rev. D (1)

S. Chelkowski, S. Hild, and A. Freise, Phys. Rev. D 79, 122002 (2009).
[Crossref]

Phys. Rev. Lett. (3)

H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).
[Crossref]

K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

S. Wise, V. Quetschke, A. J. Deshpande, G. Mueller, D. H. Reitze, D. B. Tanner, B. F. Whiting, Y. Chen, A. Tünnermann, E. Kley, and T. Clausnitzer, Phys. Rev. Lett. 95, 013901 (2005).
[Crossref]

Other (2)

D. Lodhia, D. Brown, F. Brückner, and A. Freise, “Phase effects from diffraction gratings for alignment stability,” (in preparation).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Incident beam (black) is coupled into the waveguide layer by the grating into m=±1. Orders ±1T propagate along the waveguide coupling back into the vacuum (blue) to interfere with the initially reflected light, 0R, picking up ΔΦm phase terms with each interaction with the grating. Further coupling into the vacuum is also possible (magenta), which involved further ΔΦm terms. The “*” superscript refers to the number of diffractions the beam has undergone. R=Reflection fromgrating, T=Transmission from grating, first number is order of diffraction m.
Fig. 2.
Fig. 2. Schematic layout of 2D FDTD simulation for testing WGM shift invariance. Gaussian beam injected along TFSF boundary onto WGM (red). The reflected beam (green) then propagates to the measurement line where the phase is measured. The CPML absorbs outgoing waves to reduce reflections from boundaries.
Fig. 3.
Fig. 3. Central plot shows phase change in the reflected beams wavefront Δϕp(x) against WGM displacement, δx. Top plot shows cross section of phase at δx=350nm, where the phase change is maximum. The right plot shows the variation in the phase of at x=0 against δx. Bottom plot shows the intensity of the reflected beam along x.
Fig. 4.
Fig. 4. Maximum change in phase at beam peak intensity as the WGM is displaced from δx=0d with increasing distance from the WGM surface and different FFT windowing functions. Large near-field phase shifts are seen close to the WGM and then a flat noise. Increasing the spatial and temporal resolution of FDTD ΔxΔx/2 did not appear to offer reductions in numerical noise caused by FDTD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔΦm=2πmδx/d,

Metrics