## Abstract

We correct an error in one of the equations in our original manuscript.

© 2013 Optical Society of America

The second equation in our original manuscript [1] contains a typo in which $m02 sin δ1 sin δ2$ appears as $m02 cos δ1 sin δ2$. Thus, the correct form of the equation should be

$I(σ)=sin,0(σ)4(m00+m01 cos δ1+m02 sin δ1 sin δ2+m03 cos δ2 sin δ1+m10 cos δ4+m11 cos δ1 cos δ4+m12 sin δ1 sin δ2 cos δ4+m13 sin δ1 cos δ2 cos δ4+m20 sin δ3 sin δ4+m21 cos δ1 sin δ3 sin δ4+m22 sin δ1 sin δ2 sin δ3 sin δ4+m23 sin δ1 cos δ2 sin δ3 sin δ4-m30 cos δ3 sin δ4-m31 cos δ1 cos δ3 sin δ4-m32 sin δ1 sin δ2 cos δ3 sin δ4-m33 sin δ1 cos δ2 cos δ3 sin δ4).$
The remainder of the manuscript is unaffected by the change.

Our thanks to Andrey Alenin for pointing out the error.

## Reference

1. N. Hagen, K. Oka, and E. L. Dereniak, Opt. Lett. 32, 2100 (2007). [CrossRef]

• View by:
• |
• |
• |

### Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

$I ( σ ) = s in , 0 ( σ ) 4 ( m 00 + m 01 cos δ 1 + m 02 sin δ 1 sin δ 2 + m 03 cos δ 2 sin δ 1 + m 10 cos δ 4 + m 11 cos δ 1 cos δ 4 + m 12 sin δ 1 sin δ 2 cos δ 4 + m 13 sin δ 1 cos δ 2 cos δ 4 + m 20 sin δ 3 sin δ 4 + m 21 cos δ 1 sin δ 3 sin δ 4 + m 22 sin δ 1 sin δ 2 sin δ 3 sin δ 4 + m 23 sin δ 1 cos δ 2 sin δ 3 sin δ 4 - m 30 cos δ 3 sin δ 4 - m 31 cos δ 1 cos δ 3 sin δ 4 - m 32 sin δ 1 sin δ 2 cos δ 3 sin δ 4 - m 33 sin δ 1 cos δ 2 cos δ 3 sin δ 4 ) .$