Abstract

A Nd:YAG-pumped dye-laser system was used to two-photon excite oxygen atoms at 225.6 nm in an atmospheric-pressure CH4–N2O–N2 flame. Subsequent emission at 844.7 nm from the directly populated state as well as a stronger emission at 777.5 nm that was due to the O(3p 3P → 3p 5P) collisional-energy transfer process was monitored. Two-photon-resonant oxygen-atom and hydrogen-atom (656.3-nm) emissions were also observed in the absence of a flame. Closer examination revealed that the tightly focused probe beam was producing these atoms by promoting multiphoton photolysis of the oxidizer as well as of the fuel molecules. Thus this type of laser-diagnostic probe is potentially quite intrusive, depending on the combustion region that is probed as well as on the laser energies used.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
    [CrossRef]
  2. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, Opt. Lett. 8, 365 (1983).
    [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).
    [CrossRef] [PubMed]
  4. J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
    [CrossRef]
  5. P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
    [CrossRef]
  6. C. J. Dasch, J. H. Bechtel, Opt. Lett. 6, 36 (1981).
    [CrossRef] [PubMed]
  7. R. E. Teets, J. H. Bechtel, Opt. Lett. 6, 458 (1981).
    [CrossRef] [PubMed]
  8. W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
    [CrossRef]
  9. D. R. Crosley, W. K. Bischel, Phys. Rev. (to be published).
  10. S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 4315 (1983).
    [CrossRef]
  11. B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
    [CrossRef]
  12. M. Alden, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
    [CrossRef]

1983 (4)

J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, Opt. Lett. 8, 365 (1983).
[CrossRef] [PubMed]

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 4315 (1983).
[CrossRef]

1982 (4)

B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
[CrossRef]

M. Alden, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[CrossRef]

J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).
[CrossRef] [PubMed]

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
[CrossRef]

1981 (3)

Alden, M.

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
[CrossRef]

M. Alden, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[CrossRef]

Bechtel, J. H.

Bischel, W. K.

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

D. R. Crosley, W. K. Bischel, Phys. Rev. (to be published).

Cool, T. A.

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

Craig, B. B.

B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
[CrossRef]

Crosley, D. R.

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

D. R. Crosley, W. K. Bischel, Phys. Rev. (to be published).

Dasch, C. J.

Dehmer, J. L.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 4315 (1983).
[CrossRef]

Dehmer, P. M.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 4315 (1983).
[CrossRef]

Edner, H.

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
[CrossRef]

M. Alden, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[CrossRef]

Faust, W. L.

B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
[CrossRef]

Goldberg, L. S.

B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).
[CrossRef] [PubMed]

Grafstrom, P.

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
[CrossRef]

King, G. B.

Laurendeau, N. M.

Lucht, R. P.

Perry, B. E.

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

Pratt, S. T.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 4315 (1983).
[CrossRef]

Salmon, J. T.

Svanberg, S.

M. Alden, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[CrossRef]

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
[CrossRef]

Sweeney, D. W.

Teets, R. E.

Tjossem, P. J. H.

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

Weiss, R. G.

B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
[CrossRef]

Appl. Phys. B (1)

M. Alden, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[CrossRef]

Chem. Phys. Lett. (2)

P. J. H. Tjossem, T. A. Cool, Chem. Phys. Lett. 100, 479 (1983).
[CrossRef]

W. K. Bischel, B. E. Perry, D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).
[CrossRef]

J. Chem. Phys. (3)

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, J. Chem. Phys. 78, 4315 (1983).
[CrossRef]

B. B. Craig, W. L. Faust, L. S. Goldberg, R. G. Weiss, J. Chem. Phys. 76, 5014 (1982).
[CrossRef]

J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

Opt. Comm. (1)

M. Alden, H. Edner, P. Grafstrom, S. Svanberg, Opt. Comm. 42, 244 (1982).
[CrossRef]

Opt. Lett. (4)

Other (1)

D. R. Crosley, W. K. Bischel, Phys. Rev. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Partial energy-level diagram for oxygen and hydrogen atoms.

Fig. 2
Fig. 2

Experimental schematic for oxygen-atom MPE experiments.

Fig. 3
Fig. 3

Oxygen-atom emission profile at 777.5 nm in a curved knife-edge burner supporting a fuel-rich CH4–N2O–N2 flame.

Fig. 4
Fig. 4

Oxygen-atom emission at 777.5 nm resulting from spin–orbit-resolved ground states in the primary flame zone.

Tables (1)

Tables Icon

Table 1 Order of Nonlinearity (n) of Multiphoton-Induced Emission Signalsa

Metrics