Abstract

An open-loop, all-fiber-optic gyroscope with wide dynamic range and linear scale factor is described. This novel approach converts the Sagnac phase shift into a phase shift in a low-frequency electronic signal by using optical phase modulation followed by amplitude modulation of the electronic signal. Preliminary experimental results verify the theoretical predictions.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali, R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  2. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 6, 502 (1981).
    [CrossRef] [PubMed]
  3. H. C. Lefevre, R. A. Bergh, H. J. Shaw, Opt. Lett. 7, 454 (1982).
    [CrossRef] [PubMed]
  4. W. K. Burns, R. P. Moeller, C. A. Villarruel, M. Abebe, in Technical Digest of 1983 International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983), paper 28C3-2.
  5. J. L. Davis, S. Ezekiel, Opt. Lett. 6, 505 (1981).
    [CrossRef] [PubMed]
  6. W. C. Davis, W. L. Pondrom, D. E. Thompson, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 308.
  7. B. Y. Kim, H. C. Lefevre, R. A. Bergh, H. J. Shaw, Proc. Soc. Photo-Opt. Instrum. Eng. 425, 86 (1983).
  8. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 263 (1984).
    [CrossRef] [PubMed]
  9. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 275 (1984).
  10. K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
    [CrossRef]
  11. D. Eberhard, E. Voges, Opt. Lett. 9, 22 (1984).
    [CrossRef] [PubMed]
  12. J. H. Cole, B. A. Danver, J. A. Bucaro, IEEE J. Quantum Electron. QE-18, 694 (1982).
    [CrossRef]
  13. E. L. Green, P. G. Cable, IEEE J. Quantum Electron. QE-18, 1639 (1982).
    [CrossRef]
  14. R. Ulrich, Opt. Lett. 5, 173 (1980).
    [CrossRef] [PubMed]

1984 (3)

1983 (2)

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

B. Y. Kim, H. C. Lefevre, R. A. Bergh, H. J. Shaw, Proc. Soc. Photo-Opt. Instrum. Eng. 425, 86 (1983).

1982 (3)

H. C. Lefevre, R. A. Bergh, H. J. Shaw, Opt. Lett. 7, 454 (1982).
[CrossRef] [PubMed]

J. H. Cole, B. A. Danver, J. A. Bucaro, IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

E. L. Green, P. G. Cable, IEEE J. Quantum Electron. QE-18, 1639 (1982).
[CrossRef]

1981 (2)

1980 (1)

1976 (1)

Abebe, M.

W. K. Burns, R. P. Moeller, C. A. Villarruel, M. Abebe, in Technical Digest of 1983 International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983), paper 28C3-2.

Bergh, R. A.

Böhm, K.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Bucaro, J. A.

J. H. Cole, B. A. Danver, J. A. Bucaro, IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

Burns, W. K.

W. K. Burns, R. P. Moeller, C. A. Villarruel, M. Abebe, in Technical Digest of 1983 International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983), paper 28C3-2.

Cable, P. G.

E. L. Green, P. G. Cable, IEEE J. Quantum Electron. QE-18, 1639 (1982).
[CrossRef]

Cole, J. H.

J. H. Cole, B. A. Danver, J. A. Bucaro, IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

Danver, B. A.

J. H. Cole, B. A. Danver, J. A. Bucaro, IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

Davis, J. L.

Davis, W. C.

W. C. Davis, W. L. Pondrom, D. E. Thompson, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 308.

Eberhard, D.

Ezekiel, S.

Green, E. L.

E. L. Green, P. G. Cable, IEEE J. Quantum Electron. QE-18, 1639 (1982).
[CrossRef]

Kim, B. Y.

B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 275 (1984).

B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 263 (1984).
[CrossRef] [PubMed]

B. Y. Kim, H. C. Lefevre, R. A. Bergh, H. J. Shaw, Proc. Soc. Photo-Opt. Instrum. Eng. 425, 86 (1983).

Lefevre, H. C.

Marten, P.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Moeller, R. P.

W. K. Burns, R. P. Moeller, C. A. Villarruel, M. Abebe, in Technical Digest of 1983 International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983), paper 28C3-2.

Petermann, K.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Pondrom, W. L.

W. C. Davis, W. L. Pondrom, D. E. Thompson, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 308.

Shaw, H. J.

Shorthill, R. W.

Thompson, D. E.

W. C. Davis, W. L. Pondrom, D. E. Thompson, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 308.

Ulrich, R.

Vali, V.

Villarruel, C. A.

W. K. Burns, R. P. Moeller, C. A. Villarruel, M. Abebe, in Technical Digest of 1983 International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983), paper 28C3-2.

Voges, E.

Weidel, E.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. H. Cole, B. A. Danver, J. A. Bucaro, IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

E. L. Green, P. G. Cable, IEEE J. Quantum Electron. QE-18, 1639 (1982).
[CrossRef]

Opt. Lett. (7)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

B. Y. Kim, H. C. Lefevre, R. A. Bergh, H. J. Shaw, Proc. Soc. Photo-Opt. Instrum. Eng. 425, 86 (1983).

Other (2)

W. K. Burns, R. P. Moeller, C. A. Villarruel, M. Abebe, in Technical Digest of 1983 International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics and Communication Engineers of Japan, Tokyo, 1983), paper 28C3-2.

W. C. Davis, W. L. Pondrom, D. E. Thompson, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 308.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the phase-reading, all-fiber gyroscope.

Fig. 2
Fig. 2

Modulation signals: (a) sinusoidal phase-difference modulation produced by phase modulator in sensing coil; (b) switching sequences for detector channels 1 and 2.

Fig. 3
Fig. 3

Signals from the gyroscope. Upper traces, channel 1 Lower traces, channel 2. Horizontal scale, 20 μsec/division. Waveforms in (a) and (c) are inverted because of the switching circuit. (a) Switched signals when Ω = 0 deg/sec. (b) Bandpass-filter output when Ω = 0 deg/sec. (c) Switched signal when Ω = 40 deg/sec. (d) Bandpass-filter output when Ω = 40 deg/sec.

Fig. 4
Fig. 4

Experimental results (dots) showing linear scale factor.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = C [ 1 + cos ( Δ ϕ m sin ω m t Δ ϕ R ) ] = C { 1 + [ J 0 ( Δ ϕ m ) + 2 n = 1 J 2 n ( Δ ϕ m ) cos 2 n ω m t ] × cos ( Δ ϕ R ) + [ 2 n = 1 J 2 n 1 ( Δ ϕ m ) sin ( 2 n 1 ) ω m t ] × sin ( Δ ϕ R ) } .
Channel 1 : I 1 = K 1 cos ( Δ ϕ R ) cos ( n ω m t ) + K 2 sin ( Δ ϕ R ) sin ( n ω m t ) , Channel 2 : I 2 = K 3 cos ( Δ ϕ R ) cos ( n ω m t ) + K 4 sin ( Δ ϕ R ) sin ( n ω m t ) ,
K 1 = K 3 J 2 ( Δ ϕ m ) , K 2 = K 4 ( 8 / π ) n = 1 ( 1 ) n J 2 n 1 ( Δ ϕ m ) / ( 2 n 3 ) ( 2 n + 1 ) .
I 1 = K cos ( 2 ω m t Δ ϕ R ) , I 2 = K cos ( 2 ω m t + Δ ϕ R ) .

Metrics