Abstract

The influence of the relative values of mutual modal delay, source coherence time, and signal modulation time on the power fluctuations between the two polarization states of a single-mode optical fiber is investigated.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  2. B. Crosignani, B. Daino, P. Di Porto, IEEE Trans. Microwave Theory Tech. MTT-23, 121 (1975).
  3. B. Crosignani, C. H. Papas, P. Di Porto, J. Opt. Soc. Am. 67, 1300 (1977).
    [CrossRef]
  4. E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
    [CrossRef]
  5. S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

1977 (1)

1975 (1)

B. Crosignani, B. Daino, P. Di Porto, IEEE Trans. Microwave Theory Tech. MTT-23, 121 (1975).

1973 (1)

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

1971 (1)

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

Chinnock, E. L.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

Cohen, L. G.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

Crosignani, B.

B. Crosignani, C. H. Papas, P. Di Porto, J. Opt. Soc. Am. 67, 1300 (1977).
[CrossRef]

B. Crosignani, B. Daino, P. Di Porto, IEEE Trans. Microwave Theory Tech. MTT-23, 121 (1975).

Daino, B.

B. Crosignani, B. Daino, P. Di Porto, IEEE Trans. Microwave Theory Tech. MTT-23, 121 (1975).

Di Porto, P.

B. Crosignani, C. H. Papas, P. Di Porto, J. Opt. Soc. Am. 67, 1300 (1977).
[CrossRef]

B. Crosignani, B. Daino, P. Di Porto, IEEE Trans. Microwave Theory Tech. MTT-23, 121 (1975).

Holden, W. S.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

Keck, D. B.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Papas, C. H.

Personick, S. D.

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

Standley, R. D.

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Personick, Bell Syst. Tech. J. 50, 843 (1971).

IEEE Trans. Microwave Theory Tech. (1)

B. Crosignani, B. Daino, P. Di Porto, IEEE Trans. Microwave Theory Tech. MTT-23, 121 (1975).

J. Opt. Soc. Am. (1)

Proc. IEEE (1)

E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, Proc. IEEE 61, 1499 (1973).
[CrossRef]

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ m 2 = ( P m 2 P m 2 ) / P m 2
I m ( z ) = + P m ( z , t ) d t ,
T c τ 12 T m
E ( r , z , t ) = e 1 ( r ) × exp [ i ω 0 t i β 1 ( ω 0 ) z ] Φ 1 ( z , t ) + e 2 ( r ) × exp [ i ω 0 t i β 2 ( ω 0 ) z ] Φ 2 ( z , t ) ,
Φ 1 , 2 ( z , t ) = d ω c 1 , 2 ( z , ω ) × exp { i ( ω ω 0 ) t i [ β 1 , 2 ( ω ) β 1 , 2 ( ω 0 ) ] } ,
d c 1 ( z , ω ) / d z = i K ( z ) exp [ i Δ β ( ω ) z ] c 2 ( z , ω ) , d c 2 ( z , ω ) / d z = i K ( z ) exp [ i Δ β ( ω ) ] c 1 ( z , ω ) ,
( z + 1 V 1 t ) Φ 1 ( z , t ) = i K ( z ) exp [ i Δ β ( ω 0 ) z ] Φ 2 ( z , t ) , ( z + 1 V 2 t ) Φ 2 ( z , t ) = i K ( z ) exp [ i Δ β ( ω 0 ) z ] Φ 1 ( z , t ) ,
V i = ( d β i / d ω ) ω = ω 0 1
Φ 1 ( z , t ) = Φ 1 ( z = 0 , t z / V 1 ) + i 0 z K ( z ) × exp [ i Δ β ( ω 0 ) z ] Φ 2 ( z , t + z z V 1 ) d z , Φ 2 ( z , t ) = Φ 2 ( z = 0 , t z / V 2 ) + i 0 z K ( z ) × exp [ i Δ β ( ω 0 ) z ] Φ 1 ( z , t + z z V 2 ) d z ,
Φ 1 ( z , t ) = Φ 1 ( z = 0 , t z / V 1 ) + i 0 z K ( z ) × exp [ i Δ β ( ω 0 ) z ] Φ 2 [ z = 0 , t z V 1 + z ( 1 V 1 1 V 2 ) ] d z + i 2 0 z 0 z K ( z ) K ( z ) × exp [ i Δ β ( ω 0 ) ( z z ) ] Φ 1 [ z = 0 , t z V 1 + ( z z ) ( 1 V 1 1 V 2 ) ] d z d z + ,
Φ i ( z = 0 , t ) = η i S ( t ) F ( t ) , i = 1 , 2 ,
Φ 1 ( z , t ) = η 1 S ( t z / V 1 ) F ( t z / V 1 ) + i η 2 S ( t z / V 1 ) 0 z K ( z ) × exp [ i Δ β ( ω 0 ) z ] F [ t z V 1 + z ( 1 V 1 1 V 2 ) ] d z + i η 1 S ( t z / V 1 ) 0 z 0 z K ( z ) K ( z ) × exp [ i Δ β ( ω 0 ) ( z z ) ] × F [ t z V 1 + ( z z ) ( 1 V 1 1 V 2 ) ] d z d z +
P 1 ( z , t ) = | Φ 1 ( z , t ) | 2 ̅ = | η 1 | 2 | S ( t z / V 1 ) | 2 | F ( 0 ) | 2 ̅ + | η 2 | 2 | S ( t z / V 1 ) | 2 0 z 0 z K ( z ) K ( z ) × exp [ i Δ β ( ω 0 ) ( z z ) ] × F ( 0 ) F * [ ( z z ) ( 1 V 2 1 V 1 ) ] ̅ d z d z | η 1 | 2 | S ( t z / V 1 ) | 2 { 0 z 0 z K ( z ) K ( z ) × exp [ i Δ β ( ω 0 ) ( z z ) ] × F * ( 0 ) F [ ( z z ) ( 1 V 1 1 V 2 ) ] ̅ d z d z + c . c . } ,
P 1 ( z , t ) = | S ( t z / V 1 ) | 2 + | S ( t z / V 1 ) | 2 d t I 1 ( z ) ,

Metrics