Abstract

We have demonstrated electro-optically tuned second-harmonic generation using Type I KDP inside a plasma-electrode discharge cell. An axial voltage of ±52 kV is required to switch a 1.064-μm beam by conversion to 0.53 μm, in agreement with theory. Electro-optically tuned harmonic generation may be combined with a recently developed transparent plasma electrode to produce a large-aperture switch for multipass laser systems.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Haas, “Electro-optic Harmonic Conversion Switched Multipass Systems”, Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 6-11–6-14.
  2. H. Akahori, Bul. Electrotech. Lab. Jpn. 34(8), 40 (1970);D. T. Hon, IEEE J. Quantum Electron. QE-12, 148 (1976).
    [CrossRef]
  3. J. Goldhar, M. A. Henesian, Opt. Lett. 9, 73 (1984).
    [CrossRef] [PubMed]
  4. J. Goldhar, M. A. Henesian, Proc. Soc. Photo-Opt. Instrum. Eng. 464, 64 (1984).
  5. R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
    [CrossRef]
  6. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), pp. 41–48.
  7. W. R. Cook, R. F. S. Hearmon, H. Jaffe, D. F. Nelson, “Piezooptic and Electrooptic Constants”, in Landolt- Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, K. H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1979), Vol, 11, pp. 495–670.

1984 (2)

J. Goldhar, M. A. Henesian, Proc. Soc. Photo-Opt. Instrum. Eng. 464, 64 (1984).

J. Goldhar, M. A. Henesian, Opt. Lett. 9, 73 (1984).
[CrossRef] [PubMed]

1981 (1)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

1970 (1)

H. Akahori, Bul. Electrotech. Lab. Jpn. 34(8), 40 (1970);D. T. Hon, IEEE J. Quantum Electron. QE-12, 148 (1976).
[CrossRef]

Akahori, H.

H. Akahori, Bul. Electrotech. Lab. Jpn. 34(8), 40 (1970);D. T. Hon, IEEE J. Quantum Electron. QE-12, 148 (1976).
[CrossRef]

Cook, W. R.

W. R. Cook, R. F. S. Hearmon, H. Jaffe, D. F. Nelson, “Piezooptic and Electrooptic Constants”, in Landolt- Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, K. H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1979), Vol, 11, pp. 495–670.

Craxton, R. S.

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

Goldhar, J.

J. Goldhar, M. A. Henesian, Opt. Lett. 9, 73 (1984).
[CrossRef] [PubMed]

J. Goldhar, M. A. Henesian, Proc. Soc. Photo-Opt. Instrum. Eng. 464, 64 (1984).

Haas, R. A.

R. A. Haas, “Electro-optic Harmonic Conversion Switched Multipass Systems”, Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 6-11–6-14.

Hearmon, R. F. S.

W. R. Cook, R. F. S. Hearmon, H. Jaffe, D. F. Nelson, “Piezooptic and Electrooptic Constants”, in Landolt- Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, K. H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1979), Vol, 11, pp. 495–670.

Henesian, M. A.

J. Goldhar, M. A. Henesian, Proc. Soc. Photo-Opt. Instrum. Eng. 464, 64 (1984).

J. Goldhar, M. A. Henesian, Opt. Lett. 9, 73 (1984).
[CrossRef] [PubMed]

Jaffe, H.

W. R. Cook, R. F. S. Hearmon, H. Jaffe, D. F. Nelson, “Piezooptic and Electrooptic Constants”, in Landolt- Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, K. H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1979), Vol, 11, pp. 495–670.

Midwinter, J. E.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), pp. 41–48.

Nelson, D. F.

W. R. Cook, R. F. S. Hearmon, H. Jaffe, D. F. Nelson, “Piezooptic and Electrooptic Constants”, in Landolt- Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, K. H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1979), Vol, 11, pp. 495–670.

Zernike, F.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), pp. 41–48.

Bul. Electrotech. Lab. Jpn. (1)

H. Akahori, Bul. Electrotech. Lab. Jpn. 34(8), 40 (1970);D. T. Hon, IEEE J. Quantum Electron. QE-12, 148 (1976).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Goldhar, M. A. Henesian, Proc. Soc. Photo-Opt. Instrum. Eng. 464, 64 (1984).

Other (3)

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), pp. 41–48.

W. R. Cook, R. F. S. Hearmon, H. Jaffe, D. F. Nelson, “Piezooptic and Electrooptic Constants”, in Landolt- Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, K. H. Hellwege, A. M. Hellwege, eds. (Springer-Verlag, New York, 1979), Vol, 11, pp. 495–670.

R. A. Haas, “Electro-optic Harmonic Conversion Switched Multipass Systems”, Laser Program Annual Rep. UCRL-50021-82 (Lawrence Livermore National Laboratory, Livermore, Calif., 1982), pp. 6-11–6-14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layout of a high-power multipass amplifier using a large-aperture electro-optically tuned harmonic switch.

Fig. 2
Fig. 2

Experimental layout demonstrating electro-optic control of harmonic generation.

Fig. 3
Fig. 3

Plot of second-harmonic signal (volts) versus voltage (kilovolts) applied to crystal for Type I harmonic generation in KDP. Theory curve is plotted over experimental data points.

Fig. 4
Fig. 4

Plots of second-harmonic signal (normalized) versus angular detuning (milliradians) of Type I KDP crystal at applied voltages of A, −22.5; B,0; and C, +22.5 kV. Theory (dashed) curves are plotted over experimental (solid) curves.

Tables (1)

Tables Icon

Table 1 Comparison of Electro-optic Coefficients and Half-Wave Voltages for Pockels Cells and Electro-optic SHG Switches

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = δ 2 l 2 I ω sin 2 ( Δ k l / 2 ) / ( Δ k l ) 2
n ω 0 ̅ = n ω 0 + 0.5 ( n ω 0 ) 3 r 63 E cos θ sin 2 ϕ ,
n 2 ω e ( θ ) ̅ = n 2 ω e ( θ ) 0.5 [ n 2 ω e ( θ ) ] 3 × ( r 63 cos 2 θ 2 r 41 sin 2 θ ) E cos θ sin 2 ϕ ,
V π = λ / n 3 cos θ sin 2 ϕ [ r 63 ( 1 + cos 2 θ ) 2 r 41 sin 2 θ ] ,
r 41 r 63

Metrics