Abstract

Stimulated Raman scattering of a XeCl laser at 308 nm in a high-pressure H2 cell shows high conversion into first Stokes (S1) because of an unexpected holdoff of the second Stokes (S2) component. Specifically, a photon efficiency of 88% is obtained into S1. Comparison with a plane-wave model indicates that a theory including a spatially nonuniform gain and higher-order mode generation may be necessary to understand the holdoff of the S2 growth.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Djeu, R. Burnham, Appl. Phys. Lett. 30, 473 (1977).
    [CrossRef]
  2. S. J. Brosnan, H. Komine, E. A. Stappaerts, M. J. Plummer, J. B. West, Opt. Lett. 7, 154 (1982).
    [CrossRef] [PubMed]
  3. P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
    [CrossRef]
  4. J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
    [CrossRef]
  5. J. H. Newton, G. M. Schindler, Opt. Lett. 6, 125 (1981).
    [CrossRef] [PubMed]
  6. T. R. Loree, R. C. Sze, D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).
    [CrossRef]
  7. H. Komine, E. A. Stappaerts, Opt. Lett. 4, 398 (1979).
    [CrossRef] [PubMed]
  8. I. V. Tomov, R. Fedosejevs, D. C. D. McKen, C. Domier, A. A. Offenberger, Opt. Lett. 8, 9 (1983).
    [CrossRef] [PubMed]
  9. W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1096.
  10. Note that Ref. 9 indicates that the coefficient for the second term on the right-hand side of Eq. (1) should be αP. This is true only when the frequency dependence of the polarizability is negligible, so that αP ∝ ωS1 and αS1 ∝ ωS2. According to Ref. 11, αP = 6.8 × 10−9 cm/W and αS1 = 5.4 × 10−9 cm/W, which gives αS1(ωS1 / ωS2) = 6.5 × 10−9 ≠ αP. This is because of the resonant enhancement of the polarizability.
  11. W. K. Bischel, G. Black, in Excimer Lasers—1983, C. K. Rhodes, X. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), p. 101; corrections by personal communication with W. K. Bischel.
  12. M. G. Raymer, J. Mostowski, Phys. Rev. A 24, 1980 (1981). In this paper it is shown that the growth from spontaneous emission can be approximated by an incident intensity of Γ/2 photons/sec, where Γ is the HWHM Raman bandwidth.
    [CrossRef]
  13. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 440.
  14. The Fresnel diffraction from an aperture results in maxima and minima in the axial intensity distribution as focus is approached.13 In the present experimental arrangement the first minimum occurs 24 cm outside the cell windows, which results in a relatively smooth intensity distribution of the intensity over the length of the cell.
  15. B. N. Perry, P. Rabinowitz, M. Newstein, Phys. Rev. Lett. 49, 1921 (1982);Phys. Rev. A 27, 1989 (1983).
    [CrossRef]

1983 (2)

1982 (2)

S. J. Brosnan, H. Komine, E. A. Stappaerts, M. J. Plummer, J. B. West, Opt. Lett. 7, 154 (1982).
[CrossRef] [PubMed]

B. N. Perry, P. Rabinowitz, M. Newstein, Phys. Rev. Lett. 49, 1921 (1982);Phys. Rev. A 27, 1989 (1983).
[CrossRef]

1981 (2)

J. H. Newton, G. M. Schindler, Opt. Lett. 6, 125 (1981).
[CrossRef] [PubMed]

M. G. Raymer, J. Mostowski, Phys. Rev. A 24, 1980 (1981). In this paper it is shown that the growth from spontaneous emission can be approximated by an incident intensity of Γ/2 photons/sec, where Γ is the HWHM Raman bandwidth.
[CrossRef]

1979 (2)

H. Komine, E. A. Stappaerts, Opt. Lett. 4, 398 (1979).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

1977 (2)

T. R. Loree, R. C. Sze, D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).
[CrossRef]

N. Djeu, R. Burnham, Appl. Phys. Lett. 30, 473 (1977).
[CrossRef]

Barker, D. L.

T. R. Loree, R. C. Sze, D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).
[CrossRef]

Bischel, W. K.

W. K. Bischel, G. Black, in Excimer Lasers—1983, C. K. Rhodes, X. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), p. 101; corrections by personal communication with W. K. Bischel.

Black, G.

W. K. Bischel, G. Black, in Excimer Lasers—1983, C. K. Rhodes, X. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), p. 101; corrections by personal communication with W. K. Bischel.

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 440.

Brickman, R.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Brosnan, S. J.

Burnham, R.

N. Djeu, R. Burnham, Appl. Phys. Lett. 30, 473 (1977).
[CrossRef]

Carlsten, J. L.

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

Djeu, N.

N. Djeu, R. Burnham, Appl. Phys. Lett. 30, 473 (1977).
[CrossRef]

Domier, C.

Fedosejevs, R.

Kaiser, W.

W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1096.

Kaldor, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Komine, H.

Loree, T. R.

T. R. Loree, R. C. Sze, D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).
[CrossRef]

Maier, M.

W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1096.

McKen, D. C. D.

Mostowski, J.

M. G. Raymer, J. Mostowski, Phys. Rev. A 24, 1980 (1981). In this paper it is shown that the growth from spontaneous emission can be approximated by an incident intensity of Γ/2 photons/sec, where Γ is the HWHM Raman bandwidth.
[CrossRef]

Newstein, M.

B. N. Perry, P. Rabinowitz, M. Newstein, Phys. Rev. Lett. 49, 1921 (1982);Phys. Rev. A 27, 1989 (1983).
[CrossRef]

Newton, J. H.

Offenberger, A. A.

Perry, B. N.

B. N. Perry, P. Rabinowitz, M. Newstein, Phys. Rev. Lett. 49, 1921 (1982);Phys. Rev. A 27, 1989 (1983).
[CrossRef]

Plummer, M. J.

Rabinowitz, P.

B. N. Perry, P. Rabinowitz, M. Newstein, Phys. Rev. Lett. 49, 1921 (1982);Phys. Rev. A 27, 1989 (1983).
[CrossRef]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Raymer, M. G.

M. G. Raymer, J. Mostowski, Phys. Rev. A 24, 1980 (1981). In this paper it is shown that the growth from spontaneous emission can be approximated by an incident intensity of Γ/2 photons/sec, where Γ is the HWHM Raman bandwidth.
[CrossRef]

Schindler, G. M.

Stappaerts, E. A.

Stein, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Sze, R. C.

T. R. Loree, R. C. Sze, D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).
[CrossRef]

Tomov, I. V.

Wenzel, R. G.

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

West, J. B.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 440.

Appl. Phys. Lett. (3)

N. Djeu, R. Burnham, Appl. Phys. Lett. 30, 473 (1977).
[CrossRef]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

T. R. Loree, R. C. Sze, D. L. Barker, Appl. Phys. Lett. 31, 37 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

M. G. Raymer, J. Mostowski, Phys. Rev. A 24, 1980 (1981). In this paper it is shown that the growth from spontaneous emission can be approximated by an incident intensity of Γ/2 photons/sec, where Γ is the HWHM Raman bandwidth.
[CrossRef]

Phys. Rev. Lett. (1)

B. N. Perry, P. Rabinowitz, M. Newstein, Phys. Rev. Lett. 49, 1921 (1982);Phys. Rev. A 27, 1989 (1983).
[CrossRef]

Other (5)

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 440.

The Fresnel diffraction from an aperture results in maxima and minima in the axial intensity distribution as focus is approached.13 In the present experimental arrangement the first minimum occurs 24 cm outside the cell windows, which results in a relatively smooth intensity distribution of the intensity over the length of the cell.

W. Kaiser, M. Maier, in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1096.

Note that Ref. 9 indicates that the coefficient for the second term on the right-hand side of Eq. (1) should be αP. This is true only when the frequency dependence of the polarizability is negligible, so that αP ∝ ωS1 and αS1 ∝ ωS2. According to Ref. 11, αP = 6.8 × 10−9 cm/W and αS1 = 5.4 × 10−9 cm/W, which gives αS1(ωS1 / ωS2) = 6.5 × 10−9 ≠ αP. This is because of the resonant enhancement of the polarizability.

W. K. Bischel, G. Black, in Excimer Lasers—1983, C. K. Rhodes, X. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), p. 101; corrections by personal communication with W. K. Bischel.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus. The incident XeCl beam at 308 nm is clipped by aperture A1 and then focused with a 2-m lens L1 into a 50-cm cell containing typically 7.4 × 104 Torr of H2. The prism P1 separates the pump P, first Stokes S1, and second Stokes S2 for energy and power measurements.

Fig. 2
Fig. 2

Variation of photon efficiency of S1 and S2 as a function of aperture diameter for an incident fluence of ∼44 mJ/cm2. S1 is seen to peak at 88% photon efficiency before dropping as S2 increases at large aperture diameters.

Fig. 3
Fig. 3

Photon efficiency of S1 and S2 as a function of incident pump energy with the aperture set to 4.5-mm diameter. The H2 pressure in the cell was 7.4 × 104 Torr. The solid curves show the expected growth of S1 and S2 for a plane-wave model using Eqs. (1)(3) and the temporal pulse shape shown in Fig. 4. The dashed curve shows the growth of S1 if the gain for S2 is set arbitrarily to zero.

Fig. 4
Fig. 4

Experimental pulse shape showing pump depletion for an aperture diameter of 4.5 mm and an incident pump energy of 6.5 mJ. The solid curves show the experimentally observed input pulse and output pulse. The dotted line shows the pump depletion predicted from Eqs. (1)(3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d d z I S 1 = α P I P I S 1 α S 1 ω S 1 ω S 2 I S 2 I S 1 ,
d d z I S 2 = α S 1 I S 1 I S 2 ,
d d z I P = α P ω P ω S 1 I S 1 I P ,

Metrics