Abstract

We present a phenomenological theory of the intensity-dependent dielectric function of semiconductor-doped glasses near the absorption edge. It is shown that efficient phase conjugation by degenerate four-wave mixing should be possible in these materials.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Jain, R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).
    [CrossRef]
  2. See, e.g., C. Flytzanis, in Quantum Electronics: A Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part A.
  3. J. C. Maxwell-Garnet, Philos. Trans. R. Soc. London 203, 385 (1904).
    [CrossRef]
  4. L. Genzel, T. P. Martin, Surf. Sci. 34, 33 (1973).
    [CrossRef]
  5. P. Sheng, in Macroscopic Properties of Disordered MediaR. Burridge, S. Childress, G. Papanicolaou, eds. (Springer, Berlin, 1982) and references therein.
  6. R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).
  7. D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
    [CrossRef]
  8. R.K. Jain, M. B. Klein, R. C. Lind, Opt. Lett. 4, 328 (1979).
    [CrossRef] [PubMed]
  9. The energy gap is estimated by linear interpolation between those of CdS (2.41 eV) and CdSe (1.71 eV). In fact, for CdS0.9Se0.1, Eg ≃ 2.25 eV would be a better estimate since the composition dependence of Eg shows considerable bowing.10 This value of gap was not used because it corresponds to a substantially red-shifted transmission curve and because the value of x is uncertain. From the absorption spectrum11 of CdS we then estimate α1 ≃ 103 cm−1 at the gap and ∼4 × 102 cm−1 for Eg − ħω = 0.01 eV. Note that α1 has to be ≳5 × 102 cm−1 if p ≲ 0.01 and αc ≃ 5 cm−1. This lends support to our estimate of Eg.
  10. F. L. Pedrotti, D. C. Reynolds, Phys. Rev. 127, 1584 (1962);Y. S. Park, D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
    [CrossRef]
  11. D. Dutton, Phys. Rev. 112, 785 (1958).
    [CrossRef]
  12. L. Levy, in Applied Optics (Wiley, New York, 1980), Vol. 2, p. 38, and references therein.

1983 (1)

1979 (1)

1978 (1)

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

1973 (1)

L. Genzel, T. P. Martin, Surf. Sci. 34, 33 (1973).
[CrossRef]

1962 (1)

F. L. Pedrotti, D. C. Reynolds, Phys. Rev. 127, 1584 (1962);Y. S. Park, D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
[CrossRef]

1958 (1)

D. Dutton, Phys. Rev. 112, 785 (1958).
[CrossRef]

1904 (1)

J. C. Maxwell-Garnet, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Auston, D. H.

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

Dutton, D.

D. Dutton, Phys. Rev. 112, 785 (1958).
[CrossRef]

Flytzanis, C.

See, e.g., C. Flytzanis, in Quantum Electronics: A Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part A.

Genzel, L.

L. Genzel, T. P. Martin, Surf. Sci. 34, 33 (1973).
[CrossRef]

Ippen, E. P.

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

Jain, R. K.

R. K. Jain, R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).
[CrossRef]

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).

Jain, R.K.

Klein, M. B.

R.K. Jain, M. B. Klein, R. C. Lind, Opt. Lett. 4, 328 (1979).
[CrossRef] [PubMed]

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).

Levy, L.

L. Levy, in Applied Optics (Wiley, New York, 1980), Vol. 2, p. 38, and references therein.

Lind, R. C.

Martin, T. P.

L. Genzel, T. P. Martin, Surf. Sci. 34, 33 (1973).
[CrossRef]

Maxwell-Garnet, J. C.

J. C. Maxwell-Garnet, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

McAfee, S.

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

Pedrotti, F. L.

F. L. Pedrotti, D. C. Reynolds, Phys. Rev. 127, 1584 (1962);Y. S. Park, D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
[CrossRef]

Reynolds, D. C.

F. L. Pedrotti, D. C. Reynolds, Phys. Rev. 127, 1584 (1962);Y. S. Park, D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
[CrossRef]

Shank, C. V.

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

Sheng, P.

P. Sheng, in Macroscopic Properties of Disordered MediaR. Burridge, S. Childress, G. Papanicolaou, eds. (Springer, Berlin, 1982) and references therein.

Toschke, O.

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Philos. Trans. R. Soc. London (1)

J. C. Maxwell-Garnet, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Phys. Rev. (2)

F. L. Pedrotti, D. C. Reynolds, Phys. Rev. 127, 1584 (1962);Y. S. Park, D. C. Reynolds, Phys. Rev. 132, 2450 (1963).
[CrossRef]

D. Dutton, Phys. Rev. 112, 785 (1958).
[CrossRef]

Solid State Electron. (1)

D. H. Auston, S. McAfee, C. V. Shank, E. P. Ippen, O. Toschke, Solid State Electron. 21, 147 (1978).
[CrossRef]

Surf. Sci. (1)

L. Genzel, T. P. Martin, Surf. Sci. 34, 33 (1973).
[CrossRef]

Other (5)

P. Sheng, in Macroscopic Properties of Disordered MediaR. Burridge, S. Childress, G. Papanicolaou, eds. (Springer, Berlin, 1982) and references therein.

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).

The energy gap is estimated by linear interpolation between those of CdS (2.41 eV) and CdSe (1.71 eV). In fact, for CdS0.9Se0.1, Eg ≃ 2.25 eV would be a better estimate since the composition dependence of Eg shows considerable bowing.10 This value of gap was not used because it corresponds to a substantially red-shifted transmission curve and because the value of x is uncertain. From the absorption spectrum11 of CdS we then estimate α1 ≃ 103 cm−1 at the gap and ∼4 × 102 cm−1 for Eg − ħω = 0.01 eV. Note that α1 has to be ≳5 × 102 cm−1 if p ≲ 0.01 and αc ≃ 5 cm−1. This lends support to our estimate of Eg.

L. Levy, in Applied Optics (Wiley, New York, 1980), Vol. 2, p. 38, and references therein.

See, e.g., C. Flytzanis, in Quantum Electronics: A Treatise, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

c ( ω ) = 1 + 2 p 1 p 2 9 p 2 2 ( 1 p ) 2 [ 1 + 2 ( 2 + p ) / ( 1 p ) ] .
α c = p n 1 ( ω ) n c ( ω ) 9 2 2 ( 1 p ) 2 ( R 2 + 1 2 ) α 1 ( ω ) ,
N = 1 p η α c τ ω I ,
Δ 1 = 4 π N e 2 m e h ω 2 ω g 2 ; ω g 2 ω 2 ,
Δ c 9 2 2 [ ( 1 p ) 1 + ( 2 + p ) 2 ] 2 × 4 π e 2 m e h ω 2 ω g 2 ω g 2 ω 2 η α c τ ω I
Re Δ c ( ω ) = ( 9 p 2 2 ) [ Δ 1 ( R 2 1 2 ) + 2 1 R Δ 1 ] ( 1 p ) 2 ( R 2 + 1 2 ) 2 ,
Im Δ c ( ω ) = ( 9 p 2 2 ) [ Δ 1 ( R 2 1 2 ) 2 Δ 1 1 R ] ( 1 p ) 2 ( R 2 + 1 2 ) 2 .

Metrics