Abstract

Emission lines of atomic hydrogen produced in the hollow cathode of an electric glow discharge are found to have articulated line shapes indicating three quite different excitation mechanisms for the emitting atoms. Particularly striking is the extensive development of the far wings, which have Gaussian line shapes with FWHM values attaining 10 cm−1 or more. This corresponds to an atomic kinetic energy greater than 100 eV and suggests an origin for such energy in the cathode-fall region.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Freund, J. A. Schiavone, D. F. Brader, J. Chem. Phys. 64, 1122 (1976).
    [Crossref]
  2. J. A. Schiavone, K. C. Smyth, R. S. Freund, J. Chem. Phys. 63, 1043 (1975).
    [Crossref]
  3. C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. Ser. 25 (214), 37 (1973).
    [Crossref]
  4. N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
    [Crossref]

1978 (1)

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

1976 (1)

R. S. Freund, J. A. Schiavone, D. F. Brader, J. Chem. Phys. 64, 1122 (1976).
[Crossref]

1975 (1)

J. A. Schiavone, K. C. Smyth, R. S. Freund, J. Chem. Phys. 63, 1043 (1975).
[Crossref]

1973 (1)

C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. Ser. 25 (214), 37 (1973).
[Crossref]

Brader, D. F.

R. S. Freund, J. A. Schiavone, D. F. Brader, J. Chem. Phys. 64, 1122 (1976).
[Crossref]

Cooper, J.

C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. Ser. 25 (214), 37 (1973).
[Crossref]

Freund, R. S.

R. S. Freund, J. A. Schiavone, D. F. Brader, J. Chem. Phys. 64, 1122 (1976).
[Crossref]

J. A. Schiavone, K. C. Smyth, R. S. Freund, J. Chem. Phys. 63, 1043 (1975).
[Crossref]

Heiland, W.

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

Kraus, J. S.

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

Neff, S. H.

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

Schiavone, J. A.

R. S. Freund, J. A. Schiavone, D. F. Brader, J. Chem. Phys. 64, 1122 (1976).
[Crossref]

J. A. Schiavone, K. C. Smyth, R. S. Freund, J. Chem. Phys. 63, 1043 (1975).
[Crossref]

Smith, E. W.

C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. Ser. 25 (214), 37 (1973).
[Crossref]

Smyth, K. C.

J. A. Schiavone, K. C. Smyth, R. S. Freund, J. Chem. Phys. 63, 1043 (1975).
[Crossref]

Tolk, N. H.

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

Tully, J. C.

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

Vidal, C. R.

C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. Ser. 25 (214), 37 (1973).
[Crossref]

Astrophys. J. Suppl. Ser. (1)

C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. Ser. 25 (214), 37 (1973).
[Crossref]

J. Chem. Phys. (2)

R. S. Freund, J. A. Schiavone, D. F. Brader, J. Chem. Phys. 64, 1122 (1976).
[Crossref]

J. A. Schiavone, K. C. Smyth, R. S. Freund, J. Chem. Phys. 63, 1043 (1975).
[Crossref]

Phys. Rev. Lett. (1)

N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The two hollow-cathode sources used in the present work. The upper one is designated the grazing configuration and the lower one the end-on configuration. In each case, the light emerges from the left end through a window sealed by an O ring. Light from the grazing configuration consists mostly of photons having skimmed along the copper walls, whereas light from the end-on configuration travels normal to the only active metal surface with which it can be involved. The angled glass tube provides for a view of the positive column (which fills the vertical glass tube) unobstructed by metal deposits.

Fig. 2
Fig. 2

The H-α line in the grazing hollow cathode and in the positive column with a neon line for comparison. All traces are reproductions of original strip-chart recordings. In each case, the lines are registered with gains of 1, 4, 10, and 20 in order to give optimum displays of the various regions of the hollow-cathode line along with the two comparison lines. The upper four traces (of the hollow cathode) show the total line (top), the intermediate wings (second and third from top), and the far wings (fourth from top). The four traces of the positive column show the lack of both intermediate and far wings. The neon line is not subject to the fine-structure spread or to appreciable Doppler broadening. The H-α line lies at 656.28 nm, and the neon line at 748.89 nm has been transported to it for purposes of this comparison. Note that the hollow-cathode H-α line is quite symmetric and unshifted since it has been generated in the grazing configuration of Fig. 1(top).

Tables (1)

Tables Icon

Table 1 Hydrogen Balmer-Line Far-Wing Parameters for the Hollow-Cathode Grazing Configurationa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

e + H 2 H 2 * + e H + H * + e + K . E .

Metrics