Abstract

An in-line polarization rotator has been built into a single-mode birefringent fiber. The rotator utilizes periodic twists of the fiber’s principal axes, which were formed by rocking the preform as the fiber was drawn. The polarization conversion between the principal axes is wavelength dependent, with a bandwidth inversely proportional to the number of twist periods. The bandwidth of the present rotator was 4.8 nm for 100% conversion in a fiber length of 170 cm.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, M. Johnson, Appl. Opt. 18, 1857 (1979).
    [Crossref] [PubMed]
  2. R. C. Youngquist, J. L. Brooks, H. J. Shaw, Opt. Lett. 8, 656(1983).
    [Crossref] [PubMed]
  3. R. H. Stolen, E. H. Turner, Appl. Opt. 19, 842 (1980; E. H. Turner, R. H. Stolen, Opt. Lett. 6, 322 (1981); G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskov-Hanson, Opt. Lett. 1, 238 (1982).
    [Crossref] [PubMed]
  4. R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
    [Crossref]
  5. M. Johnson, Opt. Lett. 5, 142 (1980).
    [Crossref] [PubMed]
  6. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [Crossref]
  7. W. H. Louisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960), pp. 1–34, and references therein.
  8. H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
    [Crossref]
  9. P. McIntyre, A. W. Snyder, J. Opt. Soc. Am 68, 149 (1978).
    [Crossref] [PubMed]
  10. R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
    [Crossref]
  11. R. Ulrich, S. C. Rashleigh, W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [Crossref] [PubMed]
  12. A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, Appl. Opt. 20, 2962 (1981); A. Ashkin, J. M. Dziedzic, R. H. Stolen, Appl. Opt. 20, 2299 (1981).
    [Crossref] [PubMed]
  13. V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
    [Crossref] [PubMed]
  14. J. M. Dziedzic, A. Ashkin, R. H. Stolen, Opt. Lett. 8, 647 (1983).
    [Crossref] [PubMed]
  15. R. C. Alferness, IEEE J. Quantum Electron. QE-17, 965 (1981).
    [Crossref]

1983 (2)

1981 (2)

1980 (4)

1979 (2)

1978 (3)

P. McIntyre, A. W. Snyder, J. Opt. Soc. Am 68, 149 (1978).
[Crossref] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

1976 (1)

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[Crossref]

Alferness, R. C.

R. C. Alferness, IEEE J. Quantum Electron. QE-17, 965 (1981).
[Crossref]

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[Crossref]

Ashkin, A.

Barlow, A. J.

Brooks, J. L.

Divino, M. D.

Dziedzic, J. M.

Eickhoff, W.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Johnson, M.

Kaiser, P.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Kogelnik, H.

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[Crossref]

Louisell, W. H.

W. H. Louisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960), pp. 1–34, and references therein.

McIntyre, P.

P. McIntyre, A. W. Snyder, J. Opt. Soc. Am 68, 149 (1978).
[Crossref] [PubMed]

Payne, D. N.

Pleibel, W.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[Crossref] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Ramaswamy, V.

V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
[Crossref] [PubMed]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Ramskov-Hansen, J. J.

Rashleigh, S. C.

Schmidt, R. V.

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[Crossref]

Shaw, H. J.

Snyder, A. W.

P. McIntyre, A. W. Snyder, J. Opt. Soc. Am 68, 149 (1978).
[Crossref] [PubMed]

Stolen, R. H.

Turner, E. H.

Ulrich, R.

Youngquist, R. C.

Appl. Opt. (4)

Appl. Phys. Lett. (3)

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Kogelnik, R. V. Schmidt, IEEE J. Quantum Electron. QE-12, 396 (1976).
[Crossref]

R. C. Alferness, IEEE J. Quantum Electron. QE-17, 965 (1981).
[Crossref]

J. Opt. Soc. Am (1)

P. McIntyre, A. W. Snyder, J. Opt. Soc. Am 68, 149 (1978).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (1)

W. H. Louisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960), pp. 1–34, and references therein.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A full-twist period of a fiber-polarization rotator. For illustration, an abrupt rotation of the principal birefringence axis is shown, whereas, in the actual device, the twist is distributed along the fiber. The input light is linearly polarized along the y axis, and the lengths of sections BC and DE are half of a beat length.

Fig. 2
Fig. 2

Percent power converted from one principal axis to the orthogonal axis for (a) fiber length 170 cm, (b) fiber length 100 cm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P x = P 0 sin 2 2 N θ ; P y = P 0 cos 2 2 N θ .
[ E y 2 E x 2 ] = [ A + i B i C i C A i B ] [ E y 1 E x 1 ] , A = 1 2 δ 2 δ 2 + κ 2 sin 2 α ; B = δ δ 2 + κ 2 sin 2 α , C = 2 κ δ δ 2 + κ 2 sin 2 α , δ = Δ β 2 = π δ n λ = π L P ; α = L t 2 δ 2 + κ 2 ,
θ a = d Ω d z L t 2 ; θ = 2 π θ a .

Metrics