Abstract

A simple but rigorous analysis of the important sources of noise in homodyne detection is presented. Output noise and signal-to-noise ratios are compared for direct detection, conventional (one-port) homodyning, and two-port homodyning, in which one monitors both output ports of a 50–50 beam splitter. It is shown that two-port homodyning is insensitive to local-oscillator quadrature-phase noise and hence provides (1) a means of detecting reduced quadrature-phase fluctuations (squeezing) that is perhaps more practical than one-port homodyning and (2) an output signal-to-noise ratio that can be a modest to significant improvement over that of one-port homodyning and direct detection.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription